Skip to main content

Quaternionic Analysis: Application to Boundary Value Problems

  • Reference work entry
  • First Online:
Operator Theory

Abstract

Generalizing the complex one-dimensional function theory the class of quaternion-valued functions, defined in domains of \(\mathbb{R}^{4}\), will be considered. The null solutions of a generalized Cauchy–Riemann operator are defined as the \(\mathbb{H}\)-holomorphic functions. They show a lot of analogies to the properties of classical holomorphic functions. An operator calculus is studied that leads to integral theorems and integral representations such as the Cauchy integral representation, the Borel–Pompeiu representation, and formulas of Plemelj–Sokhotski type. Also a Bergman–Hodge decomposition in the space of square integrable functions can be obtained. Finally, it is demonstrated how these tools can be applied to the solution of non-linear boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bory-Reyes, J., Shapiro, M.: Clifford analysis versus its quaternionic counterparts. Math. Methods Appl. Sci. 33, 1089–1101 (2010)

    MathSciNet  Google Scholar 

  2. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London (1982)

    MATH  Google Scholar 

  3. Brackx, F., Schepper, H.D., Sommen, F., de Voorde, L.V.: Discrete clifford analysis: an overview. Cubo 11, 55–71 (2009)

    MATH  Google Scholar 

  4. Campos, H., Castillo, R., Kravchenko, V.: Construction and application of Bergman-type reproducing kernels for boundary and eigenvalue problems in the plane. Complex Var. Elliptic Equ. 57, 787–824 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crowe, M.: A History of Vector Analysis. Dover, New York (1967)

    MATH  Google Scholar 

  6. Faustino, N.: Discrete Clifford analysis. Ph.D. thesis, Universidade de Aveiro (2009)

    Google Scholar 

  7. Fueter, R.: Die funktionentheorie der differentialgleichungen Δ u = 0 und Δ Δ u = 0 mit vier reellen variablen. Comment. Math. Helv. 7, 307–330 (1935)

    Article  MathSciNet  Google Scholar 

  8. Fueter, R.: Funktionentheorie im Hyperkomplexen. Technical Report. Math. Inst. Univ. Zürich, Herbstsemester 1948/49. Lecture notes written and supplemented by E. Bareiss (1949)

    Google Scholar 

  9. Gauss, C.F.: Werke, Achter Band, Herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. B. G. Teubner, Leipzig (1900)

    Google Scholar 

  10. Gegelia, T.: On properties of multidimensional singular integrals in \(\mathbb{R}^{3}\). Doklady Akademii Nauk (Russian) 139, 279–282 (1961)

    MathSciNet  Google Scholar 

  11. Grassmann, H.: Die lineale Ausdehnungslehre. Verlag von Otto Wigand, Leipzig (1844)

    Google Scholar 

  12. Gürlebeck, K.: Grundlagen einer diskreten räumlich verallgemeinerten Funktionentheorie und ihrer Anwendungen. Habilitation thesis, Techn. Univ. Karl-Marx-Stadt/Germany (1988)

    Google Scholar 

  13. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  14. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  15. Gürlebeck, K., Sprößig, W.: On the treatment of fluid flow problems by methods of clifford analysis. Math. Comput. Simul. 44, 401–413 (1997)

    Article  MATH  Google Scholar 

  16. Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)

    MATH  Google Scholar 

  17. Habetha, K.: Function Theory in Algebras. Akademie-Verlag, Berlin (1983)

    Google Scholar 

  18. Kravchenko, V.: Applied Quaternionic Analysis. Heldermann Verlag, Lemgo (2003)

    MATH  Google Scholar 

  19. Kravchenko, V., Shapiro, M.: Integral Representations for Spatial Models of Mathematical Physics. Longman, Harlow (1996)

    MATH  Google Scholar 

  20. Lam, T.: Hamilton’s Quaternions. North-Holland, Amstderdam (2003)

    Google Scholar 

  21. Luna-Elizarraras, M., Shapiro, M.: A survey on the (hyper-) derivatives in complex, quaternionic and clifford analysis. Milan J. Math. 79, 521–542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malonek, H.: A new hypercomplex structure of the euclidean space \(\mathbb{R}^{n+1}\) and a concept of hypercomplex differentiability. Complex Var. 14, 25–33 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mitrea, M.: Boundary value problems for Dirac operators and Maxwell’s equations in non-smooth domains. Math. Methods Appl. Sci. 25, 1355–1369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moisil, G.C.: Sur les systèms d’ équations de M. Dirac, du type elliptique. C. R. Acad. Sci. Paris 191, 1292–1293 (1930)

    MATH  Google Scholar 

  25. Morais, J.: Approximation by homogeneous polynomial solutions of the Riesz system in \(\mathbb{R}^{3}\). Ph.D. thesis, Bauhaus-Universität Weimar (2009)

    Google Scholar 

  26. Morais, J., Georgiev, S., Sprößig, W.: Real Quaternionic Calculus Handbook, vol. 1. Springer, Heidelberg (2013)

    Google Scholar 

  27. Pap, M., Schipp, F.: Malmquist-Takenaka systems over the set of quaternions. Pure Math. Appl. 15(2–3), 261–274

    Google Scholar 

  28. Przeworska-Rolewicz, D.: Algebraic theory of right invertible operators. Study Mathematica, T. XLVIII (1973)

    Google Scholar 

  29. Qian, T., Yang, Y.: Hilbert transforms on the sphere with the clifford algebra setting. J. Fourier Anal. Appl. 15, 753–774 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tasche, M.: Eine einheitliche Herleitung verschiedener Interpolationsformeln mittels der Taylorschen Formel der Operatorenrechnung. ZAMM 61, 379–393 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Witte, J.: A reflection principle and an orthogonal decomposition concerning hypoelliptic equations. Mathematische Nachrichten 237, 169–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Gürlebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Gürlebeck, K., Sprößig, W. (2015). Quaternionic Analysis: Application to Boundary Value Problems. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_30

Download citation

Publish with us

Policies and ethics