Skip to main content

Malliavin Calculus for Stochastic Point Vortex and Lagrangian Models

  • Conference paper
  • First Online:
Seminar on Stochastic Analysis, Random Fields and Applications VII

Part of the book series: Progress in Probability ((PRPR,volume 67))

Abstract

We explore the properties of solutions of two stochastic fluid models for viscous flow in two dimensions. We establish the absolute continuity of the law of the corresponding solution using Malliavin calculus.

Mathematics Subject Classification (2010). Primary 60G02; Secondary 60H15, 76F02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arnaudon, A.B. Cruzeiro and N. Galamba, Lagrangian Navier–Stokes flows: a stochastic model. J. Phys. A: Math. Theor. 44 (2011), 175501.

    Article  MathSciNet  Google Scholar 

  2. N. Bouleau and F. Hirsch, Propriétés d’absolue continuité dans les espaces de Dirichlet et applications aux équations différentielles stochastiques. In: Séminaire de Probabilit és XX, Lecture Notes in Math. 1204 (1986), 131–161.

    Article  MathSciNet  Google Scholar 

  3. G. Cao and K. He, On a type of stochastic differential equations driven by countably many Brownian motions. J. Funct. Anal. 203 (2003), 262–285.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-Y. Chemin, Perfect Incompressible Fluids. Oxford University Press, New York, 1998.

    Google Scholar 

  5. A.J. Chorin, Numerical study of slightly viscous flow. J. Fluid Mech., 57 (1973), 785–796.

    Article  MathSciNet  Google Scholar 

  6. A.J. Chorin, Vorticity and Turbulence. Springer-Verlag, Berlin and Heidelberg, 1994.

    Google Scholar 

  7. S. Fang and T. Zhang, A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Relat. Fields 132 (2005), 356–390.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.K. Golovkin, On vanishing viscosity in the Cauchy problem for the equations of hydrodynamics. Trudy Mat. Inst. Steklov 92 (1966), 31–49.

    MathSciNet  Google Scholar 

  9. T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation. Arch. Ration. Mech. Anal. 25 3 (1967), 188–200.

    Article  MATH  Google Scholar 

  10. S. Kusuoka, Existence of densities of solutions of stochastic differential equations by Malliavin calculus. J. Funct. Anal. 258 (2010), 758–784.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially W1,1 velocities and applications. Ann. Mat. Pur. Appl. 183 (2004), 97–130.

    Article  MATH  Google Scholar 

  12. P. Malliavin, Stochastic calculus of variation and hyperelliptic operators. Proc. Int. Symp. on S.D.E. Kyoto, Kinokuniya (1978) 327–340.

    Google Scholar 

  13. C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics. Springer, 1984.

    Google Scholar 

  14. C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids. Springer, 1994.

    Google Scholar 

  15. R. Mikulevicius and B. Rozovskii, On equations of stochastic fluid mechanics. In: Stochastics in finite and infinite dimensions, Trends Math., Birkhäuser Boston, Boston, MA. (2001) 285–302.

    Google Scholar 

  16. D. Nualart, The Malliavin Calculus and Related Topics. 2nd Edition, Springer, New York, 2005.

    Google Scholar 

  17. R. Rautmann, Quasi-Lipschitz conditions in Euler flows. In: Trends in Partial Differential Equations of Mathematical Physics, Birkhäuser Basel, Switzerland, (2005) 243–256.

    Google Scholar 

  18. J. Ren and X. Zhang, Stochastic flows for SDEs with non-Lipschitz coefficients. Bull. Sci. Math. 127 (8) (2003), 739–754.

    Article  MathSciNet  MATH  Google Scholar 

  19. S.S. Sritharan and M. Xu, Convergence of particle filtering method for nonlinear estimation of vortex dynamics. Commun. Stoch. Anal. 4 (3) (2010), 443–465.

    MathSciNet  Google Scholar 

  20. S.S. Sritharan and M. Xu, A stochastic Lagrangian particle model and nonlinear filtering for three dimensional Euler flow with jumps. Commun. Stoch. Anal. 5 (3) (2011), 565–583.

    MathSciNet  Google Scholar 

  21. V.I. Yudovich, Non-stationary flows of ideal incompressible fluids. Zh. Vych. Mat. 3 (1963), 1032–1066.

    MATH  Google Scholar 

  22. X. Zhang, Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients. Stochastic Process. Appl. 115 3 (2005), 435–448.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaguru S. Sritharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Sritharan, S.S., Xu, M. (2013). Malliavin Calculus for Stochastic Point Vortex and Lagrangian Models. In: Dalang, R., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications VII. Progress in Probability, vol 67. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0545-2_11

Download citation

Publish with us

Policies and ethics