Skip to main content

The Role of IL-17 in Experimental Autoimmune Myocarditis

  • Chapter
  • First Online:
IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Experimental autoimmune myocarditis (EAM) represents a CD4+ T cell-mediated mouse model of inflammatory heart diseases. Genetically susceptible mice injected with cardiac self-antigen-loaded dendritic cells or immunized with cardiac self-antigen together with strong adjuvants develop overt cardiac inflammation. Later on, affected mice develop heart failure and a cardiac phenotype, which closely resembles the morphological picture of dilated cardiomyopathy in humans. IL-17-producing T cells contribute to EAM development, but the absence of IL-17A signaling on CD4+ T cells can be compensated by other heart-reactive T helper cell subsets. IL-17A, however, has proven to be critical for progression of acute myocarditis to an end-stage heart failure phenotype. Accordingly, cytokines promoting Th17 CD4+ expansion and/or IL-17 release, such as IL-23, IL-6, TGF-β, and IL-1, are key players in EAM and most likely in inflammatory dilated cardiomyopathy. Understanding the specific role of distinct cytokines during induction and progression of EAM will expand our knowledge on the pathogenesis of dilated cardiomyopathy and will help us to develop novel treatment strategies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eriksson U, Penninger JM (2005) Autoimmune heart failure: new understandings of pathogenesis. Int J Biochem Cell Biol 37:27–32

    Article  PubMed  CAS  Google Scholar 

  2. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538

    Article  PubMed  CAS  Google Scholar 

  3. Bobbert P, Scheibenbogen C, Jenke A, Kania G, Wilk S, Krohn S, Stehr J, Kuehl U, Rauch U, Eriksson U, Schultheiss HP, Poller W, Skurk C (2011) Adiponectin expression in patients with inflammatory cardiomyopathy indicates favourable outcome and inflammation control. Eur Heart J 32(9):1134–1147

    Article  PubMed  CAS  Google Scholar 

  4. Pauschinger M, Doerner A, Kuehl U, Schwimmbeck PL, Poller W, Kandolf R, Schultheiss HP (1999) Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 99:889–895

    Article  PubMed  CAS  Google Scholar 

  5. Koelsch SPS, Hufnagel G, Maisch B (2004) The European study of epidemiology and treatment of cardiac inflammatory diseases (ESETCID)—epidemiological results after 6 years. In: Annual meeting of the AHA, New Orleans

    Google Scholar 

  6. Badorff C, Lee GH, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5(3):320–326

    Article  PubMed  CAS  Google Scholar 

  7. Caforio ALP, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G, Daliento L (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28:1326–1333

    Article  PubMed  Google Scholar 

  8. Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30(16):1995–2002

    Article  PubMed  CAS  Google Scholar 

  9. Frustaci A, Pieroni M, Chimenti C (2006) Immunosuppressive treatment of chronic non-viral myocarditis. Ernst Schering Res Found Workshop 55:343–351

    Article  PubMed  Google Scholar 

  10. Lodge PA, Herzum M, Olszewski J, Huber SA (1987) Coxsackievirus B3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms. Am J Pathol 128:455–463

    PubMed  CAS  Google Scholar 

  11. Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR (2001) From infection to autoimmunity. J Autoimmun 16:175–186

    Article  PubMed  CAS  Google Scholar 

  12. Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147:2141–2147

    PubMed  CAS  Google Scholar 

  13. Schwimmbeck PL, Badorff C, Schultheiss HP, Strauer BE (1994) Transfer of human myocarditis into severe combined immunodeficiency mice. Circ Res 75:156–164

    Article  PubMed  CAS  Google Scholar 

  14. Neu N, Pummerer C, Rieker T, Berger P (1993) T cells in cardiac myosin-induced myocarditis. Clin Immunol Immunopathol 68:107–110

    Article  PubMed  CAS  Google Scholar 

  15. Huber SA, Sartini D, Exley M (2002) Vγ4+ T cells promote autoimmune CD8+ cytolytic T-lymphocyte activation in coxsackievirus B3-induced myocarditis in mice: role for CD4+ Th1 cells. J Virol 76:10785–10790

    Article  PubMed  CAS  Google Scholar 

  16. Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139:3630–3636

    PubMed  CAS  Google Scholar 

  17. Pummerer CL, Luze K, Grassl G, Bachmaier K, Offner F, Burrell SK, Lenz DM, Zamborelli TJ, Penninger JM, Neu N (1996) Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 97:2057–2062

    Article  PubMed  CAS  Google Scholar 

  18. Eriksson U, Kurrer MO, Sonderegger I, Iezzi G, Tafuri A, Hunziker L, Suzuki S, Bachmaier K, Bingisser RM, Penninger JM, Kopf M (2003) Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J Exp Med 197:323–331

    Article  PubMed  CAS  Google Scholar 

  19. Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, Marsch S, Widmer U (2001) Lethal autoimmune myocarditis in interferon-gamma receptor deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103:18–21

    Article  PubMed  CAS  Google Scholar 

  20. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M (2001) Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol 167:5464–5469

    PubMed  CAS  Google Scholar 

  21. Blyszczuk P, Kania G, Dieterle T, Marty RR, Valaperti A, Bertonneche C, Pedrazzini T, Berger CT, Dirnhofer S, Matter CM, Penninger JM, Lüscher TF, Eriksson U (2009) MyD88/IL-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105:912–920

    Article  PubMed  CAS  Google Scholar 

  22. Kania G, Blyszczuk P, Stein MS, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U (2009) Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of TGF-β-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res 105:462–470

    Article  PubMed  CAS  Google Scholar 

  23. Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, Penninger JM, Eriksson U (2006) T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 203:2009–2019

    Article  PubMed  CAS  Google Scholar 

  24. Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA, Rose NR (2001) Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation 104:3145–3151

    Article  PubMed  CAS  Google Scholar 

  25. Harrington LH, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  26. Dong C (2006) Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6:329–333

    Article  PubMed  CAS  Google Scholar 

  27. Park H, Li Z, Yang XO, Chan SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  28. Mathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O’Malley JT, Kapur R, Levy DE, Kansas GS, Kaplan MH (2007) Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178:4901–4907

    PubMed  CAS  Google Scholar 

  29. Lohr J, Knoechel B, Wang JJ, Villarino AV, Abbas AK (2006) Role of IL-17 and regulatory lymphocytes in a systemic autoimmune disease. J Exp Med 203:2785–2791

    Article  PubMed  CAS  Google Scholar 

  30. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203:2715–2725

    Article  PubMed  CAS  Google Scholar 

  31. Valaperti A, Marty RR, Kania G, Germano D, Mauermann N, Dirnhofer S, Leimenstoll B, Blyszczuk P, Dong C, Mueller C, Hunziker L, Eriksson U (2008) CD11b + monocyte abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J Immunol 180:2686–2695

    PubMed  CAS  Google Scholar 

  32. Sonderegger I, Rohn TA, Kurrer MO, Iezzi G, Zou Y, Kastelein RA, Bachmann MF, Kopf M (2006) Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol 36:2849–2856

    Article  PubMed  CAS  Google Scholar 

  33. Cruz-Adalia A, Jiménez-Borreguero LJ, Ramírez-Huesca M, Chico-Calero I, Barreiro O, López-Conesa E, Fresno M, Sánchez-Madrid F, Martín P (2010) CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation 122:1396–1404

    Article  PubMed  CAS  Google Scholar 

  34. Baldeviano CG, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, Gabrielson K, Iwakura Y, Rose NR, Cihakova D (2010) Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res 106:1646–1655

    Article  PubMed  CAS  Google Scholar 

  35. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490

    Article  PubMed  CAS  Google Scholar 

  36. Athanassopoulos P, Vaessen LMB, Maat APWM, Balk AHMM, Weimar W, Bogers AJJC (2004) Peripheral blood dendritic cells in human end-stage heart failure and the early post-transplant period: evidence for systemic Th1 immune responses. Eur J Cardiothorac Surg 25:619–626

    Article  PubMed  Google Scholar 

  37. Donermeyer DL, Beisel KW, Allen PM (1995) Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart. J Exp Med 182:1291–1300

    Article  PubMed  CAS  Google Scholar 

  38. Smith SC, Allen PM (1992) Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc Natl Acas Sci USA 89:9131–9135

    Article  CAS  Google Scholar 

  39. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95

    Article  PubMed  CAS  Google Scholar 

  40. Zhang P, Cox CJ, Alvarez KM, Cunningham MW (2009) Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol 183(1):27–31

    Article  PubMed  CAS  Google Scholar 

  41. Rose NR (2001) Infection, mimics, and autoimmune disease. J Clin Invest 107:943–944

    Article  PubMed  CAS  Google Scholar 

  42. Marty RR, Dirnhofer S, Mauermann N, Schweikert S, Akira S, Hunziker L, Penninger JM, Eriksson U (2006) MyD88 signaling controls autoimmune myocarditis induction. Circulation 113:258–265

    Article  PubMed  CAS  Google Scholar 

  43. Maisel A, Cesario D, Baird S, Rehman J, Haghighi P, Carter S (1998) Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ Res 82:458–463

    Article  PubMed  CAS  Google Scholar 

  44. Moraru M, Roth A, Keren G, George J (2006) Cellular autoimmunity to cardiac myosin in patients with a recent myocardial infarction. Int J Cardiol 107:61–66

    Article  PubMed  Google Scholar 

  45. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519

    Article  PubMed  CAS  Google Scholar 

  46. Schett G, Metzler B, Kleindienst R, Amberger A, Recheis H, Xu Q, Wick G (1999) Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc Res 42:685–695

    Article  PubMed  CAS  Google Scholar 

  47. Eriksson U, Kurrer MO, Schmitz N, Marsch SC, Fontana A, Eugster HP, Kopf M (2003) Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation 107:320–325

    Article  PubMed  CAS  Google Scholar 

  48. Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691

    Article  PubMed  CAS  Google Scholar 

  49. Afanasyeva M, Georgakopoulos D, Belardi DF, Bedja D, Fairweather D, Wang Y, Kaya Z, Gabrielson KL, Rodriguez ER, Caturegli P, Kass DA, Rose NR (2005) Impaired up-regulation of CD25 on CD4+ T cells in IFN-γ knockout mice is associated with progression of myocarditis to heart failure. Proc Natl Acad Sci USA 102:180–185

    Article  PubMed  CAS  Google Scholar 

  50. Cihakova D, Barin JG, Afanasyeva M, Kimura M, Fairweather D, Berg M, Talor MV, Baldeviano GC, Frisancho S, Gabrielson K, Bedja D, Rose NR (2008) Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol 172:1195–1208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Urs Eriksson acknowledges support from Medtronik, Boston Scientific, Novartis, the Swiss Heart Foundation, and from the Swiss National Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Eriksson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Eriksson, U. (2013). The Role of IL-17 in Experimental Autoimmune Myocarditis. In: Quesniaux, V., Ryffel, B., Padova, F. (eds) IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0522-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0522-3_12

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0521-6

  • Online ISBN: 978-3-0348-0522-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics