Skip to main content

Adiabatic Limit, Heat Kernel and Analytic Torsion

  • Conference paper
  • First Online:
Metric and Differential Geometry

Part of the book series: Progress in Mathematics ((PM,volume 297))

Abstract

We study the uniform behavior of the heat kernel under the adiabatic limit using microlocal analysis and apply it to derive a formula for the analytic torsion.

Mathematics Subject Classification (2000). 58Jxx, 35K08, 57Q10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah M, Donnelly H, Singer I. Eta invariants, signature defect of cusps and values of L-functions. Ann. of Math.. 1983;118:131–177.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berline N, Getzler E, Vergne M. Heat kernels and Dirac operators. Springer-Verlag: Grundlehren der Mathematischen Wissenschaften; 1992.

    Book  MATH  Google Scholar 

  3. A. Berthomieu, J.-M. Bismut, Formes de torsion analytique et metriques de Quillen, C. R. Acad. Sci., Paris, 315(1992), pp. 1071–1077.

    Google Scholar 

  4. Bismut J-M, Cheeger J. n-invariants and their adiabatic limits. J. Amer. Math. Soc.. 1989;2:33–70.

    MathSciNet  MATH  Google Scholar 

  5. J.-M. Bismut, J. Cheeger, Families index for manifolds with boundary, superconnections and cones. I., J. Funct. Anal., 89(1990), pp. 313–363.

    Google Scholar 

  6. J.-M. Bismut, J. Cheeger, Families index for manifolds with boundary, superconnections and cones. II., J. Funct. Anal., 90(1990), pp. 306–354.

    Google Scholar 

  7. Bismut J-M, Cheeger J. Transgressed Euler classes of SL(2, Z) vector bundles, adiabatic limits of eta invariants and special values of -functions. Ann. Sci. cole Norm. Sup.. 1992;25:335–391.

    MathSciNet  MATH  Google Scholar 

  8. J.-M. Bismut, D. Freed, The analysis of elliptic families. I, Comm. Math. Phys., 106(1986), pp. 159–176.

    Google Scholar 

  9. J.-M. Bismut, D. Freed, The analysis of elliptic families. II, Comm. Math. Phys., 107(1986), pp. 103–163.

    Google Scholar 

  10. J.-M. Bismut, J. Lott, Fibres plats, images directes et forms de torsion analytique, C. R. Acad. Sci., Paris, 316(1993), pp. 477–482.

    Google Scholar 

  11. J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and MÜller, Astérisque, 205(1992).

    Google Scholar 

  12. Cheeger J. Analytic torsion and the heat equation. Ann. Math.. 1979;109:259–322.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheeger J. n-invariants, the adiabatic approximation and conical singularities. J. Diff. Geom.. 1987;26:175–221.

    MathSciNet  MATH  Google Scholar 

  14. X. Dai, Adiabatics limits, the non-multiplicativity of signature and Leray spectral sequence, J.A.M.S., 4(1991), pp. 265–321.

    Google Scholar 

  15. Dai X. Geometric invariants and their adiabatic limits. Proc. Symp. in Pure Math.. 1993;54:145–156.

    Google Scholar 

  16. Dai X, Freed D. n-invariants and determinant lines. J. Math. Phys.. 1994;35:5155–5194.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai X, Zhang W. Circle bundles and the Kreck-Stolz invariant. Trans. Amer. Math. Soc.. 1995;347:3587–3593.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Epstein, R.B. Melrose, Shrinking tubes and the ∂-Neumann problem,

    Google Scholar 

  19. C.L. Epstein, R.B. Melrose and G. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math.

    Google Scholar 

  20. Fried D. Lefschetz formulas for flows. Contem. Math.. 1987;58:19–69.

    Article  MathSciNet  Google Scholar 

  21. Freed DS. Reidemeister torsion, spectral sequences, and Brieskorn spheres. J. Reine Angew. Math.. 1992;429:75–89.

    MathSciNet  MATH  Google Scholar 

  22. Getzler E. A short proof of the Atiyah-Singer index theorem. Topology. 1986;25:111–117.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hadamard J. The problem of diffusion of waves. Ann. of Math.. 1942;43:510–522.

    Article  MathSciNet  MATH  Google Scholar 

  24. A.W. Hassell, Analytic surgery and analytic torsion, Ph.D. Thesis, MIT, 1994.

    Google Scholar 

  25. W. LÜck, 2-torsion and 3-manifolds, Low-dimensional Topology, Conf. Proc. 1992.

    Google Scholar 

  26. W. LÜck, T. Schick, T. Thielman, Torsion and fibrations, J. Reine Angew. Math. 498(1998), pp. 1–33.

    Google Scholar 

  27. Mazzeo RR, Melrose RB. The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration. J. Diff. Geom.. 1990;31:185–213.

    MathSciNet  MATH  Google Scholar 

  28. R. Melrose, Differential analysis on manifolds with corner, in preparation, 1996.

    Google Scholar 

  29. Melrose RB. Calculus of conormal distributions on manifolds with corners. Int. Math. Res. Notices. 1992;3:51–61.

    Article  MathSciNet  Google Scholar 

  30. Melrose RB. The Atiyah-Patodi-Singer index theorem. Peters, Ltd: A.K; 1993.

    Google Scholar 

  31. Melrose RB, Piazza P. Families of Dirac operators, boundaries and the -calculus. J. Diff. Geom.. 1997;46:99–180.

    MathSciNet  MATH  Google Scholar 

  32. Melrose RB, Piazza P. An index theorem for families of Dirac operators on odddimensional manifolds with boundary. J. Diff. Geom.. 1997;46:287–334.

    MathSciNet  MATH  Google Scholar 

  33. W. MÜller, Analytic torsion and -torsion of Riemannian manifolds, Adv. in Math., 28(1978), pp. 233–305.

    Google Scholar 

  34. W. MÜller, Analytic torsion and -torsion for unimodular representations, J. A.M. S., 6(1993), pp. 721–753.

    Google Scholar 

  35. W. MÜller, Signature defects of cusps of Hilbert modular varieties and values of -series at = 1, J. Diff. Geom., 20(1994), pp. 55–119.

    Google Scholar 

  36. Nagase M. Twistor spaces and the general adiabatic expansions. J. Funct. Anal.. 2007;251(2):680–737.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nicolaescu L. Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds. Comm. Anal. Geom.. 1998;6:331–392.

    MathSciNet  MATH  Google Scholar 

  38. Ray DB, Singer IM. -torsion and the Laplacian on Riemannian manifolds. Adv. in Math.. 1971;7:145–210.

    Article  MathSciNet  MATH  Google Scholar 

  39. Seeley RT. Topics in pseudo-differential operators. Edizioni Cremonese, Roma: CIME; 1969. p. 169–305.

    Google Scholar 

  40. Witten E. Global gravitational anomalies. Comm. Math. Phys.. 1985;100:197–229.

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang W. Circle bundles, adiabatic limits of n-invariants and Rokhlin congruences. Ann. Inst. Fourier (Grenoble). 1994;44:249–270.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhe Dai .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jeff Cheeger for his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Dai, X., Melrose, R.B. (2012). Adiabatic Limit, Heat Kernel and Analytic Torsion. In: Dai, X., Rong, X. (eds) Metric and Differential Geometry. Progress in Mathematics, vol 297. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0257-4_9

Download citation

Publish with us

Policies and ethics