Skip to main content

The Asymptotics of the Ray-Singer Analytic Torsion of Hyperbolic 3-manifolds

  • Conference paper
  • First Online:
Metric and Differential Geometry

Part of the book series: Progress in Mathematics ((PM,volume 297))

Abstract

In this paper we consider the analytic torsion of a closed hyperbolic 3-manifold associated with the mth symmetric power of the standard representation of SL(2C) and we study its asymptotic behavior as mtends to infinity. The leading coefficient of the asymptotic formula is given by the volume of the hyperbolic 3-manifold. It follows that the Reidemeister torsion associated with the symmetric powers determines the volume of a closed hyperbolic 3-manifold.

Mathematics Subject Classification (2000). Primary: 58J52, Secondary: 11M36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. D. Barbasch, H. Moscovici, 2-index and the trace formula, J. Funct. Analysis 53 (1983), 151–201.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Berndt, Representations of linear groups. An introduction based on examples from physics and number theory. Vieweg, Wiesbaden, 2007.

    Google Scholar 

  3. J.-M. Bismut, E. Vasserot, The asymptotics of the Ray-Singer analytic torsion of the symmetric powers of a positive vector bundle. Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 835–848.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second edition. Mathematical Surveys and Monographs, 67. Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  5. U. Bröcker, Die Ruellesche Zetafunktion fÜr -induzierte Anosov-FlÜsse, Ph.D. thesis, Humboldt-Universität Berlin, Berlin, 1998.

    Google Scholar 

  6. U. Bunke and M. Olbirch, Selberg zeta and theta functions, A differential operator approach, Akademie Verlag, Berlin, 1995.

    Google Scholar 

  7. T.A. Chapman, Topological invariance of Whitehaed torsion, Amer. J. Math. 96 (1974), 488–497.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  9. D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. math. 84 (1986), 523–540.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Fried, Meromorphic zeta functions of analytic flows, Commun. Math. Phys. 174 (1995), 161–190.

    Article  MathSciNet  MATH  Google Scholar 

  11. A.W. Knapp, Representation theory of semisimple groups, Princeton University Press, Princeton and Oxford, 2001.

    Google Scholar 

  12. A.W. Knapp and E.M. Stein, Intertwining operators for semisimple Lie groups, Annals of Math. 93 (1971), 489–578.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (1961) 329–387.

    Google Scholar 

  14. Matsushima, Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963), 365–416.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.J. Miatello, The Minakshisundaram-Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature. Trans. Amer. Math. Soc. 260 (1980), 1–33.

    MathSciNet  MATH  Google Scholar 

  16. J.J. Millson, Closed geodesics and the -invariant, Annals of Math. 108 (1978), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

    Article  MathSciNet  MATH  Google Scholar 

  18. G.D. Mostow, Strong rigidity of locally symmetric spaces, Princeton Univ. Press and Univ. of Tokyo Press, 1973.

    Google Scholar 

  19. W. MÜller, Analytic torsion and -torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721–753.

    Google Scholar 

  20. G. Prasad, Strong rigidity of-rank 1 lattices, Invent. math. 21 (1973), 255–286.

    Article  MathSciNet  MATH  Google Scholar 

  21. D.B. Ray, I.M. Singer; -torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7, 145–210. (1971).

    Google Scholar 

  22. M.A. Shubin, Pseudodifferential operators and spectral theory, Second edition. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  23. J. Silhan, A real analog of Kostant’s version of the Bott-Borel-Weil theorem, J. of Lie theory 14 (2004), 481–499.

    MathSciNet  MATH  Google Scholar 

  24. A. Voros, Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys. 110 (1987), 439–465.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), no. 3, 357–381.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Thurston, Three-dimensional geometry and topology, Vol. 1. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.

    Google Scholar 

  27. N.R. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc. 82 (1976), 171–195.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Wotzke, Die Ruellsche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten, Ph.D. thesis, Bonn, 2008, Bonner Mathematische Schriften, Nr. 389.

    Google Scholar 

  29. B. Zimmermann, A note on hyperbolic 3-manifolds of the same volume, Monatsh. Math. 117, (1994), no. 1-2, 139–143.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Müller .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jeff Cheeger for his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Müller, W. (2012). The Asymptotics of the Ray-Singer Analytic Torsion of Hyperbolic 3-manifolds. In: Dai, X., Rong, X. (eds) Metric and Differential Geometry. Progress in Mathematics, vol 297. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0257-4_11

Download citation

Publish with us

Policies and ethics