Skip to main content

Endothelial dysfunction in pulmonary hypertension

  • Chapter
  • First Online:
Endothelial Dysfunction and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Pulmonary arterial hypertension (PAH) is a rare disease caused by functional and structural abnormalities in distal pulmonary arterioles that result in progressive increases in pulmonary vascular resistance, often leading to right heart failure and death. Endothelial dysfunction, defined as a shift in the balance of production of endothelial vasodilator factors (i.e., nitric oxide and prostacyclin), and vasoconstrictor and proliferative factors (i.e., endothelin-1 and thromboxane A2), has been strongly implicated in PAH. Here we review the evidence supporting a central role for endothelial dysfunction in the pathogenesis of PAH as a result of genetic and environmental influences, and extend this concept to include the critical balance between pathways for endothelial growth and survival. In addition, we present support for the hypothesis that the initial loss of endothelial cells, largely by apoptosis, an extreme form of endothelial dysfunction, triggers a cascade of events that ultimately result in the typical, complex constellation of functional and structural lung vascular abnormalities, including formation of the proliferative intimal and plexiform lesions. This novel paradigm may help in the design of strategies that better address the root cause of PAH and may possibly lead to more effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin LJ (1997) Primary pulmonary hypertension. N Engl J Med 336: 111–117

    PubMed  CAS  Google Scholar 

  2. Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M et al (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43: 5S-12S

    PubMed  Google Scholar 

  3. Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351: 1655–1665

    PubMed  CAS  Google Scholar 

  4. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43: 13S-24S

    PubMed  CAS  Google Scholar 

  5. Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118: 722–730

    PubMed  CAS  Google Scholar 

  6. Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105: 1672–1678

    PubMed  CAS  Google Scholar 

  7. Scott J (2000) Pulling apart pulmonary hypertension. Nat Genet 26: 3–4

    PubMed  CAS  Google Scholar 

  8. Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JX (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285: L740–754

    PubMed  CAS  Google Scholar 

  9. McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, Ahearn G (2004) Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126: 78S-92S

    PubMed  Google Scholar 

  10. Chen YF, Oparil S (2000) Endothelial dysfunction in the pulmonary vascular bed. Am J Med Sci 320: 223–232

    PubMed  CAS  Google Scholar 

  11. Veyssier-Belot C, Cacoub P (1999) Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension. Cardiovasc Res 44: 274–282

    PubMed  CAS  Google Scholar 

  12. Nicod LP (2007) The endothelium and genetics in pulmonary arterial hypertension. Swiss Med Wkly 137: 437–442

    PubMed  CAS  Google Scholar 

  13. Archer S, Rich S (2000) Primary pulmonary hypertension: A vascular biology and translational research “Work in progress”. Circulation 102: 2781–2791

    PubMed  CAS  Google Scholar 

  14. Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: Marker or mediator of disease? Ann Intern Med 114: 464–469

    PubMed  CAS  Google Scholar 

  15. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, Loyd JE (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327: 70–75

    PubMed  CAS  Google Scholar 

  16. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333: 214–221

    PubMed  CAS  Google Scholar 

  17. Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, Voelkel NF (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159: 1925–1932

    PubMed  CAS  Google Scholar 

  18. Humbert M, Montani D, Perros F, Dorfmuller P, Adnot S, Eddahibi S (2008) Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol 49: 113–118

    PubMed  CAS  Google Scholar 

  19. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351: 1425–1436

    PubMed  CAS  Google Scholar 

  20. Bellamy TC, Wood J, Goodwin DA, Garthwaite J (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci USA 97: 2928–2933

    PubMed  CAS  Google Scholar 

  21. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc Natl Acad Sci USA 95: 9220–9225

    PubMed  CAS  Google Scholar 

  22. Xue C, Johns RA (1995) Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333: 1642–1644

    PubMed  CAS  Google Scholar 

  23. Ozaki M, Kawashima S, Yamashita T, Ohashi Y, Rikitake Y, Inoue N, Hirata KI, Hayashi Y, Itoh H, Yokoyama M (2001) Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension 37: 322–327

    PubMed  CAS  Google Scholar 

  24. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, Zapol WM (1997) Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81: 34–41

    PubMed  CAS  Google Scholar 

  25. Quinlan TR, Li D, Laubach VE, Shesely EG, Zhou N, Johns RA (2000) eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 279: L641–650

    PubMed  CAS  Google Scholar 

  26. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94: 2036–2044

    PubMed  CAS  Google Scholar 

  27. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 82: 1007–1015

    PubMed  CAS  Google Scholar 

  28. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106: 873–879

    PubMed  CAS  Google Scholar 

  29. Lee TC, Zhao YD, Courtman DW, Stewart DJ (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101: 2345–2348

    PubMed  CAS  Google Scholar 

  30. Han RN, Babaei S, Robb M, Lee T, Ridsdale R, Ackerley C, Post M, Stewart DJ (2004) Defective lung vascular development and fatal respiratory distress in endothelial NO synthase-deficient mice: A model of alveolar capillary dysplasia? Circ Res 94: 1115–1123

    PubMed  CAS  Google Scholar 

  31. Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109: 159–165

    PubMed  Google Scholar 

  32. Nakayama T (2005) Prostacyclin synthase gene: Genetic polymorphisms and prevention of some cardiovascular diseases. Curr Med Chem Cardiovasc Hematol Agents 3: 157–164

    PubMed  CAS  Google Scholar 

  33. Lawler OA, Miggin SM, Kinsella BT (2001) Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling. J Biol Chem 276: 33596–33607

    PubMed  CAS  Google Scholar 

  34. Zhang X, Hintze TH (2001) cAMP signal transduction cascade, a novel pathway for the regulation of endothelial nitric oxide production in coronary blood vessels. Arterioscler Thromb Vasc Biol 21: 797–803

    PubMed  CAS  Google Scholar 

  35. Hoshikawa Y, Voelkel NF, Gesell TL, Moore MD, Morris KG, Alger LA, Narumiya S, Geraci MW (2001) Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am J Respir Crit Care Med 164: 314–318

    PubMed  CAS  Google Scholar 

  36. Geraci MW, Gao B, Shepherd DC, Moore MD, Westcott JY, Fagan KA, Alger LA, Tuder RM, Voelkel NF (1999) Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J Clin Invest 103: 1509–1515

    PubMed  CAS  Google Scholar 

  37. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Stewart DJ (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328: 1732–1739

    PubMed  CAS  Google Scholar 

  38. Galie N, Manes A, Branzi A (2004) The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 61: 227–237

    PubMed  CAS  Google Scholar 

  39. Garland CJ, Plane F, Kemp BK, Cocks TM (1995) Endothelium-dependent hyperpolarization: A role in the control of vascular tone. Trends Pharmacol Sci 16: 23–30

    PubMed  CAS  Google Scholar 

  40. Busse R, Fleming I (2006) Vascular endothelium and blood flow. Handb Exp Pharmacol: 43–78

    Google Scholar 

  41. Kajiya M, Hirota M, Inai Y, Kiyooka T, Morimoto T, Iwasaki T, Endo K, Mohri S, Shimizu J, Yada T et al (2007) Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 292: H2737–2744

    PubMed  CAS  Google Scholar 

  42. Morio Y, Homma N, Takahashi H, Yamamoto A, Nagaoka T, Sato K, Muramatsu M, Fukuchi Y (2007) Activity of endothelium-derived hyperpolarizing factor is augmented in monocrotaline-induced pulmonary hypertension of rat lungs. J Vasc Res 44: 325–335

    PubMed  CAS  Google Scholar 

  43. Torok J (2000) Histamine-induced relaxation in pulmonary artery of normotensive and hypertensive rats: Relative contribution of prostanoids, nitric oxide and hyperpolarization. Physiol Res 49: 107–114

    PubMed  CAS  Google Scholar 

  44. Wood P (1958) Pulmonary hypertension with special reference to the vasoconstrictive factor. Br Heart J 20: 557–570

    PubMed  CAS  Google Scholar 

  45. Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111: 3105–3111

    PubMed  CAS  Google Scholar 

  46. Davies RJ, Morrell NW (2008) Molecular mechanisms of pulmonary arterial hypertension: Role of mutations in the bone morphogenetic protein type II receptor. Chest 134: 1271–1277

    PubMed  CAS  Google Scholar 

  47. Higenbottam T, Wheeldon D, Wells F, Wallwork J (1984) Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol (prostacyclin). Lancet 1: 1046–1047

    PubMed  CAS  Google Scholar 

  48. McLaughlin VV, Shillington A, Rich S (2002) Survival in primary pulmonary hypertension: The impact of epoprostenol therapy. Circulation 106: 1477–1482

    PubMed  CAS  Google Scholar 

  49. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, Rainisio M, Simonneau G (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: Prognostic factors and survival. J Am Coll Cardiol 40: 780–788

    PubMed  CAS  Google Scholar 

  50. Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F et al (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: A randomised placebocontrolled study. Lancet 358: 1119–1123

    PubMed  CAS  Google Scholar 

  51. Hasuda T, Satoh T, Shimouchi A, Sakamaki F, Kyotani S, Matsumoto T, Goto Y, Nakanishi N (2000) Improvement in exercise capacity with nitric oxide inhalation in patients with precapillary pulmonary hypertension. Circulation 101: 2066–2070

    PubMed  CAS  Google Scholar 

  52. Ghofrani HA, Wiedemann R, Rose F, Olschewski H, Schermuly RT, Weissmann N, Seeger W, Grimminger F (2002) Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 136: 515–522

    PubMed  CAS  Google Scholar 

  53. Cerinic Matucci M, Del Rosso A, Federico P, Livi R, Fiori G, Bartoli F, Blagojevic J, Tempestini A, Pignone A (2007) Therapeutic challenges for systemic sclerosis: Facts and future targets. Ann N Y Acad Sci 1110: 448–454

    PubMed  CAS  Google Scholar 

  54. Macchia A, Marchioli R, Marfisi R, Scarano M, Levantesi G, Tavazzi L, Tognoni G (2007) A meta-analysis of trials of pulmonary hypertension: A clinical condition looking for drugs and research methodology. Am Heart J 153: 1037–1047

    PubMed  Google Scholar 

  55. Berger G, Azzam ZS, Hoffman R, Yigla M (2009) Coagulation and anticoagulation in pulmonary arterial hypertension. Isr Med Assoc J 11: 376–379

    PubMed  Google Scholar 

  56. Eisenberg PR, Lucore C, Kaufman L, Sobel BE, Jaffe AS, Rich S (1990) Fibrinopeptide A levels indicative of pulmonary vascular thrombosis in patients with primary pulmonary hypertension. Circulation 82: 841–847

    PubMed  CAS  Google Scholar 

  57. Geggel RL, Carvalho AC, Hoyer LW, Reid LM (1987) von Willebrand factor abnormalities in primary pulmonary hypertension. Am Rev Respir Dis 135: 294–299

    PubMed  CAS  Google Scholar 

  58. White RJ, Meoli DF, Swarthout RF, Kallop DY, Galaria, II, Harvey JL, Miller CM, Blaxall BC, Hall CM, Pierce RA et al (2007) Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293: L583–590

    PubMed  CAS  Google Scholar 

  59. White RJ, Galaria, II, Harvey J, Blaxall BC, Cool CD, Taubman MB (2005) Tissue factor is induced in a rodent model of severe pulmonary hypertension characterized by neointimal lesions typical of human disease. Chest 128: 612S-613S

    PubMed  Google Scholar 

  60. Riewald M, Ruf W (2002) Orchestration of coagulation protease signaling by tissue factor. Trends Cardiovasc Med 12: 149–154

    PubMed  CAS  Google Scholar 

  61. Pyo R, Jensen KK, Wiekowski MT, Manfra D, Alcami A, Taubman MB, Lira SA (2004) Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3. Am J Pathol 164: 2289–2297

    PubMed  CAS  Google Scholar 

  62. Mackman N (1997) Regulation of the tissue factor gene. Thromb Haemost 78: 747–754

    PubMed  CAS  Google Scholar 

  63. Li X, Wen Z, He X, He S (2006) Effects of cinnamic acid on expression of tissue factor induced by TNFalpha in endothelial cells and its mechanisms. J Chin Med Assoc 69: 207–212

    PubMed  CAS  Google Scholar 

  64. Drake TA, Hannani K, Fei HH, Lavi S, Berliner JA (1991) Minimally oxidized lowdensity lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 138: 601–607

    PubMed  CAS  Google Scholar 

  65. Pendurthi UR, Rao LV (2008) Factor VIIa interaction with tissue factor and endothelial cell protein C receptor on cell surfaces. Semin Hematol 45: S21–24

    PubMed  CAS  Google Scholar 

  66. White RJ (2004) Pulmonary arterial hypertension: Building a better mouse trap for 2010. Drug Discov Today Ther Strateg 351–359

    Google Scholar 

  67. Dorfmuller P, Perros F, Balabanian K, Humbert M (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22: 358–363

    PubMed  CAS  Google Scholar 

  68. Tuder RM, Voelkel NF (1998) Pulmonary hypertension and inflammation. J Lab Clin Med 132: 16–24

    PubMed  CAS  Google Scholar 

  69. Mouthon L, Guillevin L, Humbert M (2005) Pulmonary arterial hypertension: An autoimmune disease? Eur Respir J 26: 986–988

    PubMed  CAS  Google Scholar 

  70. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678–689

    PubMed  CAS  Google Scholar 

  71. Teder P, Noble PW (2000) A cytokine reborn? Endothelin-1 in pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol 23: 7–10

    PubMed  CAS  Google Scholar 

  72. Miyata M, Sakuma F, Yoshimura A, Ishikawa H, Nishimaki T, Kasukawa R (1995) Pulmonary hypertension in rats. 2. Role of interleukin-6. Int Arch Allergy Immunol 108: 287–291

    PubMed  CAS  Google Scholar 

  73. Golembeski SM, West J, Tada Y, Fagan KA (2005) Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest 128: 572S-573S

    PubMed  Google Scholar 

  74. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S (2009) Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res 10: 6

    PubMed  Google Scholar 

  75. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB (2009) Interleukin- 6 overexpression induces pulmonary hypertension. Circ Res 104: 236–244, 228p following 244

    PubMed  CAS  Google Scholar 

  76. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15: 427–438

    PubMed  CAS  Google Scholar 

  77. Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, Eddahibi S (2000) Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol 23: 762–771

    PubMed  CAS  Google Scholar 

  78. Campbell AI, Zhao Y, Sandhu R, Stewart DJ (2001) Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 104: 2242–2248

    PubMed  CAS  Google Scholar 

  79. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: Implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98: 209–217

    PubMed  CAS  Google Scholar 

  80. Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J (2007) Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292: L1473–1479

    PubMed  CAS  Google Scholar 

  81. Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, Southwood M, James V, Trembath RC, Morrell NW (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98: 818–827

    PubMed  CAS  Google Scholar 

  82. Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosagedependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110: 1502–1510

    PubMed  CAS  Google Scholar 

  83. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94: 1109–1114

    PubMed  CAS  Google Scholar 

  84. West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295: L744–755

    PubMed  CAS  Google Scholar 

  85. Song Y, Jones JE, Beppu H, Keaney JF, Jr., Loscalzo J, Zhang YY (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112: 553–562

    PubMed  CAS  Google Scholar 

  86. Song Y, Coleman L, Shi J, Beppu H, Sato K, Walsh K, Loscalzo J, Zhang YY (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295: H677–690

    PubMed  CAS  Google Scholar 

  87. Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, Newman JH, Phillips JA 3rd, Soubrier F, Trembath RC et al (2009) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 54: S32–42

    PubMed  CAS  Google Scholar 

  88. Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284: 15794–15804

    PubMed  CAS  Google Scholar 

  89. Lu Q, Patel B, Harrington EO, Rounds S (2009) Transforming growth factor-beta1 causes pulmonary microvascular endothelial cell apoptosis via ALK5. Am J Physiol Lung Cell Mol Physiol 296: L825–838

    PubMed  CAS  Google Scholar 

  90. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275: 9102–9105

    PubMed  CAS  Google Scholar 

  91. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6: 460–463

    PubMed  CAS  Google Scholar 

  92. Thistlethwaite PA, Lee SH, Du LL, Wolf PL, Sullivan C, Pradhan S, Deutsch R, Jamieson SW (2001) Human angiopoietin gene expression is a marker for severity of pulmonary hypertension in patients undergoing pulmonary thromboendarterectomy. J Thorac Cardiovasc Surg 122: 65–73

    PubMed  CAS  Google Scholar 

  93. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348: 500–509

    PubMed  CAS  Google Scholar 

  94. Sullivan CC, Du L, Chu D, Cho AJ, Kido M, Wolf PL, Jamieson SW, Thistlethwaite PA (2003) Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci USA 100: 12331–12336

    PubMed  CAS  Google Scholar 

  95. Chu D, Sullivan CC, Du L, Cho AJ, Kido M, Wolf PL, Weitzman MD, Jamieson SW, Thistlethwaite PA (2004) A new animal model for pulmonary hypertension based on the overexpression of a single gene, angiopoietin-1. Ann Thorac Surg 77: 449–456; discussion 456–447

    PubMed  Google Scholar 

  96. Dewachter L, Adnot S, Fadel E, Humbert M, Maitre B, Barlier-Mur AM, Simonneau G, Hamon M, Naeije R, Eddahibi S (2006) Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med 174: 1025–1033

    PubMed  CAS  Google Scholar 

  97. Kugathasan L, Dutly AE, Zhao YD, Deng Y, Robb MJ, Keshavjee S, Stewart DJ (2005) Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension. Chest 128: 633S-642S

    PubMed  CAS  Google Scholar 

  98. Kugathasan L, Ray JB, Deng Y, Rezaei E, Dumont DJ, Stewart DJ (2009) The angiopietin- 1-Tie2 pathway prevents rather than promotes pulmonary arterial hypertension in transgenic mice. J Exp Med 206: 2221–2234

    PubMed  CAS  Google Scholar 

  99. Zhao YD, Campbell AI, Robb M, Ng D, Stewart DJ (2003) Protective role of angiopoietin- 1 in experimental pulmonary hypertension. Circ Res 92: 984–991

    PubMed  CAS  Google Scholar 

  100. Abdulmalek K, Ashur F, Ezer N, Ye F, Magder S, Hussain SN (2001) Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am J Physiol Lung Cell Mol Physiol 281: L582–590

    PubMed  CAS  Google Scholar 

  101. Yamamoto A, Takahashi H, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2008) Downregulation of angiopoietin-1 and Tie2 in chronic hypoxic pulmonary hypertension. Respiration 75: 328–338

    PubMed  CAS  Google Scholar 

  102. Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, Leonce S, Saboureau D, Delescluse I, Vilaine JP, Vanhoutte PM (2000) Phenotypic and functional changes in regenerated porcine coronary endothelial cells : Increased uptake of modified LDL and reduced production of NO. Circ Res 86: 854–861

    PubMed  CAS  Google Scholar 

  103. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. Faseb J 19: 1178–1180

    PubMed  CAS  Google Scholar 

  104. Masri FA, Xu W, Comhair SA, Asosingh K, Koo M, Vasanji A, Drazba J, Anand-Apte B, Erzurum SC (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293: L548–554

    PubMed  CAS  Google Scholar 

  105. Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, Zhu JH, Chen JZ (2007) Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial. J Am Coll Cardiol 49: 1566–1571

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Yelle, D., Kugathasan, L., MacLaren, R.E., Stewart, D.J. (2010). Endothelial dysfunction in pulmonary hypertension. In: Dauphinee, S., Karsan, A. (eds) Endothelial Dysfunction and Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0346-0168-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0168-9_5

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0167-2

  • Online ISBN: 978-3-0346-0168-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics