Skip to main content

Prediction of Spherical Equivalent with Vanilla ResNet

  • Conference paper
  • First Online:
Myopic Maculopathy Analysis (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14563))

  • 95 Accesses

Abstract

Recently, an increasing of deep learning models has been introduced to address various fundus image tasks, e.g. segmentation, classification, and enhancement. Concurrently, this emergence has been accompanied by the development of increasingly intricate model architectures and a parameter surge. However, these methods have overlooked the crucial significance of the intrinsic characteristics of the data. In this regard, we posit that a vanilla ResNet, when coupled with appropriate data augmentation, can also achieve a favorable performance. This study assesses the performance of the foundational deep learning architecture, the standard Residual Network (ResNet), in predicting Spherical Equivalent (SE) values. Spherical Equivalent (SE) is a crucial parameter in optometry employed for prescribing eyeglasses to correct vision. Our study intends to demonstrate the effectiveness of ResNet with proper data augmentations in achieving precise SE predictions without additional enhancements. Utilizing a vanilla ResNet50 model, we secured the third position in the Myopic Maculopathy Analysis Challenge 2023, task 3. Remarkably, our findings reveal that the unaltered deployment of ResNet yields exceptional predictive performance for estimating SE, highlighting the architectural prowess of simple models in a vital yet frequently demanding optometric context. Our software package is available at https://github.com/HuayuLiArizona/Prediction-of-Spherical-Equivalent-With-Vanilla-ResNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arega, T.W., Legrand, F., Bricq, S., Meriaudeau, F.: Using MRI-specific data augmentation to enhance the segmentation of right ventricle in multi-disease, multi-center and multi-view cardiac MRI. In: Puyol Anton, E., et al. (eds.) Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. Lecture Notes in Computer Science(), vol. 13131, pp. 250–258. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93722-5_27

  2. Charng, J., Alam, K., Swartz, G., Kugelman, J., Alonso-Caneiro, D., Mackey, D.A., Chen, F.K.: Deep learning: applications in retinal and optic nerve diseases. Clin. Exp. Optom. 106(5), 466–475 (2023)

    Article  Google Scholar 

  3. Dai, L., Wu, L., Li, H., Cai, C., Wu, Q., Kong, H., Liu, R., Wang, X., Hou, X., Liu, Y., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 3242 (2021)

    Article  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint: arXiv:2010.11929 (2020)

  5. Enaholo, E.S., Musa, M.J., Zeppieri, M.: The spherical equivalent. In: StatPearls [Internet]. StatPearls Publishing (2023)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

    Google Scholar 

  7. Heo, B., et al.: AdamP: slowing down the slowdown for momentum optimizers on scale-invariant weights. arXiv preprint: arXiv:2006.08217 (2020)

  8. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016)

    Article  Google Scholar 

  9. Ikuno, Y.: Overview of the complications of high myopia. Retina 37(12), 2347–2351 (2017)

    Article  Google Scholar 

  10. Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.W., Heng, P.A.: CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans. Med. Imaging 39, 1483–1493 (2020)

    Article  Google Scholar 

  11. Liu, R., et al.: DeepDRiD: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3(6) (2022)

    Google Scholar 

  12. Liu, Z., et al.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  13. Ohno-Matsui, K., et al.: International photographic classification and grading system for myopic maculopathy. Am. J. Ophthalmol. 159(5), 877–883 (2015)

    Article  Google Scholar 

  14. Silva, R.: Myopic maculopathy: a review. Ophthalmologica 228(4), 197–213 (2012)

    Article  Google Scholar 

  15. Singh, A., Jothi Balaji, J., Rasheed, M.A., Jayakumar, V., Raman, R., Lakshminarayanan, V.: Evaluation of explainable deep learning methods for ophthalmic diagnosis. Clin. Ophthalmol., 2573–2581 (2021)

    Google Scholar 

  16. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  17. Uysal, E.S., Bilici, M.Ş., Zaza, B.S., Özgenç, M.Y., Boyar, O.: Exploring the limits of data augmentation for retinal vessel segmentation. arXiv preprint: arXiv:2105.09365 (2021)

  18. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2017. Lecture Notes in Computer Science(), vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  19. Yokoi, T., Ohno-Matsui, K.: Diagnosis and treatment of myopic maculopathy. Asia-Pac. J. Ophthalmol. 7(6), 415–421 (2018)

    Google Scholar 

  20. Yu, S., et al.: MIL-VT: multiple instance learning enhanced vision transformer for fundus image classification. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Lecture Notes in Computer Science(), vol. 12908, pp. 45–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_5

    Chapter  Google Scholar 

  21. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint: arXiv:1710.09412 (2017)

  22. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  23. Zhu, W., et al.: Self-supervised equivariant regularization reconciles multiple instance learning: Joint referable diabetic retinopathy classification and lesion segmentation. In: 18th International Symposium on Medical Information Processing and Analysis (SIPAIM) (2022)

    Google Scholar 

  24. Zhu, W., et al.: OTRE: where optimal transport guided unpaired image-to-image translation meets regularization by enhancing. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds.) Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 13939, pp. 415–427. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34048-2_32

    Chapter  Google Scholar 

  25. Zhu, W., Qiu, P., Farazi, M., Nandakumar, K., Dumitrascu, O.M., Wang, Y.: Optimal transport guided unsupervised learning for enhancing low-quality retinal images. arXiv preprint: arXiv:2302.02991 (2023)

  26. Zhu, W., Qiu, P., Lepore, N., Dumitrascu, O.M., Wang, Y.: NNMobile-Net: rethinking CNN design for deep learning-based retinopathy research. arXiv preprint: arXiv:2306.01289 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Zhu, W., Chen, X., Wang, Y. (2024). Prediction of Spherical Equivalent with Vanilla ResNet. In: Sheng, B., Chen, H., Wong, T.Y. (eds) Myopic Maculopathy Analysis. MICCAI 2023. Lecture Notes in Computer Science, vol 14563. Springer, Cham. https://doi.org/10.1007/978-3-031-54857-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54857-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54856-7

  • Online ISBN: 978-3-031-54857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics