Skip to main content

Resource Cooperative Scheduling Optimization Considering Security in Edge Mobile Networks

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2023)

Abstract

With the rapid development of technologies such as the Internet of Things and artificial intelligence, the contradiction between limited user computing resources and real-time, fast, and safe processing of large amounts of data has become an urgent issue. The emergence of edge computing provides IoT applications with a low-latency, high-bandwidth, and high-performance computing service. Due to the complexity and dynamics of the edge computing environment itself, and the limited resources of the terminal, the security issue of resource collaborative scheduling in the edge mobile network has become an important research topic. Different from existing work, this paper proposes an efficient and secure multi-user resource cooperative scheduling model, which comprehensively considers resource allocation, task offloading, QoE requirements, and data security. In the model, ChaCha20 encryption technology is introduced as a security mechanism to prevent data from being maliciously stolen by attackers during the offloading process, and computing speed is used as an indicator to quantify QoE requirements. A resource collaborative scheduling algorithm that integrates security mechanisms and computing acceleration is also proposed to minimize the total cost of optimizing the edge computing system. Finally, the effectiveness and superiority of the model and algorithm are verified by simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, S., Hui, S., Jie, C., et al.: Edge computing—an emerging computing model for the internet of everything era. J. Comput. Res. Dev. 54(5), 907–924 (2017)

    Google Scholar 

  2. Jiang, C., Fan, T., Gao, H., et al.: Energy aware edge computing: a survey. Comput. Commun. 151, 556–580 (2020)

    Article  Google Scholar 

  3. Xin, H., Jun, T., Jian, L.: Collaborative trustworthy framework for edge computing. J. Electron. Inf. Technol. 44(12), 4256–4264 (2022)

    Google Scholar 

  4. Luo, Q., Hu, S., Li, C., et al.: Resource scheduling in edge computing: a survey. IEEE Commun. Surv. Tutorials 23(4), 2131–2165 (2021)

    Article  Google Scholar 

  5. Xin, Z., Fang, L., Zhi, C., et al.: Edge computing: platforms, applications and challenges. J. Comput. Res. Dev. 55(2), 327–337 (2018)

    Google Scholar 

  6. He, W., Zhang, Y., Huang, Y., et al.: Integrated resource allocation and task scheduling for full-duplex mobile edge computing. IEEE Trans. Veh. Technol. 71(6), 6488–6502 (2022)

    Article  Google Scholar 

  7. Lu, Y., Chen, X., Zhang, Y., et al.: Cost-efficient resources scheduling for mobile edge computing in ultra-dense networks. IEEE Trans. Netw. Serv. Manage. 19(3), 3163–3173 (2022)

    Article  Google Scholar 

  8. Guo, S., Liu, J., Yang, Y., et al.: Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing. IEEE Trans. Mob. Comput. 18(2), 319–333 (2018)

    Article  Google Scholar 

  9. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)

    Google Scholar 

  10. Deng, Y., Chen, Z., Yao, X., et al.: Parallel offloading in green and sustainable mobile edge computing for delay-constrained IoT system. IEEE Trans. Veh. Technol. 68(12), 12202–12214 (2019)

    Article  Google Scholar 

  11. Vaidya, U., Mehta, P.G., Shanbhag, U.V.: Nonlinear stabilization via control Lyapunov measure. IEEE Trans. Autom. Control 55(6), 1314–1328 (2010)

    Article  MathSciNet  Google Scholar 

  12. Pasteris, S., Wang, S., Herbster, M., et al.: Service placement with provable guarantees in heterogeneous edge computing systems. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 514–522. IEEE (2019)

    Google Scholar 

  13. Li, Q., Zhao, J., Gong, Y.: Cooperative computation offloading and resource allocation for mobile edge computing. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Meng, S., Li, Q., Wu, T., et al.: A fault-tolerant dynamic scheduling method on hierarchical mobile edge cloud computing. Comput. Intell. 35(3), 577–598 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ning, Z., Dong, P., Wang, X., et al.: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans. Intell. Syst. Technol. (TIST) 10(6), 1–24 (2019)

    Article  Google Scholar 

  16. Zhang, L., Zhou, W., Xia, J., et al.: DQN-based mobile edge computing for smart Internet of vehicle. EURASIP J. Adv. Sig. Process. 2022(1), 1–16 (2022)

    Google Scholar 

  17. Guo, F., Zhang, H., Ji, H., et al.: An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans. Networking 26(6), 2651–2664 (2018)

    Article  Google Scholar 

  18. Jošilo, S., Dán, G.: Computation offloading scheduling for periodic tasks in mobile edge computing. IEEE/ACM Trans. Networking 28(2), 667–680 (2020)

    Article  Google Scholar 

  19. Elgendy, I.A., Zhang, W., Tian, Y.C., et al.: Resource allocation and computation offloading with data security for mobile edge computing. Futur. Gener. Comput. Syst. 100, 531–541 (2019)

    Article  Google Scholar 

  20. Daemen, J., Reijndael, R.V.: The advanced encryption standard. Dr. Dobb’s J. Softw. Tools Prof. Programmer 26(3), 137–139 (2001)

    Google Scholar 

  21. Zhang, J., Zheng, R., Zhao, X., et al.: A computational resources scheduling algorithm in edge cloud computing: from the energy efficiency of users’ perspective. J. Supercomput., 1–22 (2022)

    Google Scholar 

  22. Stepanovic, S., Georgakarakos, G., Holmbacka, S., et al.: An efficient model for quantifying the interaction between structural properties of software and hardware in the ARM big. LITTLE architecture. Concurrency Comput. Pract. Exp. 32(10), e5230 (2020)

    Google Scholar 

  23. Xu, X., Zhang, X., Gao, H., et al.: BeCome: blockchain-enabled computation offloading for IoT in mobile edge computing. IEEE Trans. Industr. Inf. 16(6), 4187–4195 (2019)

    Article  Google Scholar 

  24. Panneerselvam, S., Rinnegan, S.M.: Efficient resource use in heterogeneous architectures. In: Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, pp. 373–386 (2016)

    Google Scholar 

  25. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. HotCloud 10(4–4), 19 (2010)

    Google Scholar 

  26. Melendez, S., McGarry, M.P.: Computation offloading decisions for reducing completion time. In: 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 160–164. IEEE (2017)

    Google Scholar 

  27. Wang, C., Liang, C., Yu, F.R., et al.: Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wireless Commun. 16(8), 4924–4938 (2017)

    Article  Google Scholar 

  28. Mao, Y., Zhang, J., Song, S.H., et al.: Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Trans. Wireless Commun. 16(9), 5994–6009 (2017)

    Article  Google Scholar 

  29. Du, J., Zhao, L., Feng, J., et al.: Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Trans. Commun. 66(4), 1594–1608 (2017)

    Article  Google Scholar 

  30. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, Spring Joint Computer Conference, pp. 483–485 (1967)

    Google Scholar 

  31. Konopiński, M.K.: Shannon diversity index: a call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies. PeerJ 8, e9391 (2020)

    Article  Google Scholar 

  32. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols (2018)

    Google Scholar 

  33. Boyd, S., Mattingley, J.: Branch and bound methods. Notes EE364b, Stanford University, 07 (2007, 2006)

    Google Scholar 

  34. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018)

    Article  Google Scholar 

  35. Elgendy, I.A., Zhang, W.Z., Zeng, Y., et al.: Efficient and security multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks. IEEE Trans. Netw. Serv. Manage. 17(4), 2410–2422 (2020)

    Article  Google Scholar 

  36. Bibi, A., Majeed, M.F., Ali, S, et al.: Secured optimized resource allocation in mobile edge computing. Mob. Inf. Sys. 2022 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Consulting Project of Chinese Academy of Engineering under Grant 2023-XY-09, the National Natural Science Foundation of China under Grant 62272100, and in part by the Fundamental Research Funds for the Central Universities and the Academy-Locality Cooperation Project of Chinese Academy of Engineering under Grant JS2021ZT05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, C., Yang, P., Yi, M., Du, M., Li, B. (2024). Resource Cooperative Scheduling Optimization Considering Security in Edge Mobile Networks. In: Gao, H., Wang, X., Voros, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-54521-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54521-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54520-7

  • Online ISBN: 978-3-031-54521-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics