Skip to main content

Port-Hamiltonian Systems’ Modelling in Electrical Engineering

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering (SCEE 2022)

Part of the book series: Mathematics in Industry ((TECMI,volume 43))

  • 102 Accesses

Abstract

The port-Hamiltonian (pH) modelling framework allows for models that preserve essential physical properties such as energy conservation or dissipative inequalities. If all subsystems are modelled as pH systems and the inputs are related to the output in a linear manner, the overall system can be modelled as a pH system, too, which preserves the properties of the underlying subsystems. If the coupling is given by a skew-symmetric matrix, as usual in many applications, the overall system can be easily derived from the subsystems without the need of introducing dummy variables and therefore artificially increasing the complexity of the system. Hence the framework of pH systems is especially suitable for modelling multiphysical systems.

In this paper, we show that pH systems are a natural generalization of Hamiltonian systems, define coupled pH systems as ordinary and differential-algebraic equations. To highlight the suitability for electrical engineering applications, we derive pH models for MNA network equations, electromagnetic devices and coupled systems thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled differential-algebraic equations. BIT 41, 1–25 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bartel, A., Günther, M.: Multirate schemes – an answer of numerical analysis to a demand from applications. In: Günther, M., Schilders, W. (eds.) Novel Mathematics Inspired by Industrial Challenges, pp. 5–27. Springer (2022). https://doi.org/10.1007/978-3-030-96173-2_1

  3. Bartel, A., Günther, M., Jacob, B., et al.: Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems. Numer. Math. 155, 1–34 (2023). https://doi.org/10.1007/s00211-023-01369-5

  4. Bartel, A., Brunk, M., Günther, M., Schöps, S.: Dynamic iteration for coupled problems of electric circuits and distributed devices. SIAM J. Sci. Comput. 35(2), B315–B335 (2013). https://doi.org/10.1137/120867111

    Article  MathSciNet  Google Scholar 

  5. Diab, M.: Splitting methods for partial differential-algebraic systems with application on coupled field-circuit DAEs. Ph.D. thesis, Humboldt Universität zu Berlin (2022)

    Google Scholar 

  6. Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model. Electr. Netw. Devices Fields 9, 295–319 (1996)

    Article  Google Scholar 

  7. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 1432–1467 (1996)

    Article  MathSciNet  Google Scholar 

  8. Günther, M., Bartel, A., Jacob, B., Reis, T.: Dynamic iteration schemes and port-Hamiltonian formulation in coupled DAE circuit simulation. Int. J. Circuit Theory Appl. 49, 430–452 (2021)

    Article  Google Scholar 

  9. Günther, M., Feldmann, U.: CAD based electric circuit modeling I: mathematical structure and index of network equations. Surv. Math. Ind. 8, 97–129 (1999)

    MathSciNet  Google Scholar 

  10. Günther, M., Sandu, A.: Multirate generalized additive Runge Kutta methods. Numer. Math. 133, 497–524 (2016). https://doi.org/10.1007/s00211-015-0756-z

    Article  MathSciNet  Google Scholar 

  11. Jacob, B., Zwart, H.J.: Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. Birkhäuser Verlag, Basel (2012)

    Book  Google Scholar 

  12. Jeltsema, D., van der Schaft, A.J.: Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1(2–3), 173–387 (2014)

    Google Scholar 

  13. Mehrmann, V., Morandin, R.: Structure-preserving discretization for port-Hamiltonian descriptor systems. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 6863–6868 (2019)

    Google Scholar 

  14. van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Schlacher, K., Irschnik, H. (eds.) Advanced Dynamics and Control of Structures and Machines. CISM, vol. 444, pp. 127–167. Springer, Vienna (2004). https://doi.org/10.1007/978-3-7091-2774-2_9

    Chapter  Google Scholar 

  15. van der Schaft, A.: Port-Hamiltonian systems: an introductory survey. In: Sanz-Sole, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. III, pp. 1339–1365. European Mathematical Society Publishing House (2006)

    Google Scholar 

Download references

Acknowledgements

Michael Günther is indebted to the funding given by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 765374, ROMSOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartel, A., Clemens, M., Günther, M., Jacob, B., Reis, T. (2024). Port-Hamiltonian Systems’ Modelling in Electrical Engineering. In: van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. (eds) Scientific Computing in Electrical Engineering. SCEE 2022. Mathematics in Industry(), vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-54517-7_15

Download citation

Publish with us

Policies and ethics