Skip to main content

Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14505))

  • 8 Accesses

Abstract

Dynamic soaring refers to a flight technique used primarily by large seabirds to extract energy from the wind shear layers formed above ocean surface. A small Unmanned Aerial Vehicle (UAV) capable of efficient dynamic soaring maneuvers can enable long endurance missions in context of patrol or increased flight range. To realize autonomous energy-saving patterns by a UAV, a real-time trajectory generation for a dynamic soaring maneuver accounting for varying external conditions has to be performed. The design of the flight trajectory is formulated as an Optimal Control Problem (OCP) and solved within direct collocation based optimization. A surrogate model of the optimal traveling cycle capturing wind profile uncertainties is constructed using Polynomial Chaos Expansion (PCE). The unknown wind profile parameters are estimated from observed trajectory by means of a Genetic Algorithm (GA). The PCE surrogate model is subsequently utilized to update the optimal trajectory using the estimated wind profile parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, D., Hou, Z., Guo., Z., Yang, X., Gao, X.: Optimal patterns of dynamic soaring with a small unmanned aerial vehicle. Proc. Inst. Mech. Engineers J. Aeros. Eng. 231, 13593–1608 (2016). https://doi.org/10.1177/0954410016656875

  2. Zhao, Y.: Optimal patterns of glider dynamic soaring. Optimal Control Appl. Methods 25(1), 67–89 (2004)

    Article  MathSciNet  Google Scholar 

  3. Flanzer, T., Bower, G., Kroo, I.: Robust trajectory optimization for dynamic soaring. In: AIAA Guidance, Navigation, and Control Conference, pp. 1–22 (2012). https://doi.org/10.2514/6.2012-4603

  4. Hong, H., Zheng, H., Holzapfel, F., Tang, S.: Dynamic soaring in unspecified wind shear: a real-time quadratic-programming approach. In: 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, pp. 600–605 (2019). https://doi.org/10.1109/MED.2019.8798573

  5. Perez, R.E., Arnal, J., Jansen, W.P.: Neuro-evolutionary control for optimal dynamic soaring. In: AIAA Scitech 2020 Forum (2020). https://doi.org/10.2514/6.2020-1946

  6. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Tom, P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control. Dyn. 29(6), 1435–1440 (2006). https://doi.org/10.2514/1.20478

    Article  Google Scholar 

  7. Sachs, G., Grüter, B.: Optimization of thrust-augmented dynamic soaring. J. Optim. Appl. 192(1), 960–978 (2022). https://doi.org/10.1007/s10957-021-01999-5

    Article  MathSciNet  Google Scholar 

  8. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  Google Scholar 

  9. Novák, L., Novák, D.: Surrogate modelling in the stochastic analysis of concrete girders failing in shear. In: Proceedings of the Fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, pp. 1741–1747 (2019)

    Google Scholar 

  10. Knio, O., Le Maître, O.: Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38(1), 616–640 (2006). https://doi.org/10.1016/j.fluiddyn.2005.12.003

    Article  MathSciNet  Google Scholar 

  11. Novák, L., Novák, D.: Polynomial chaos expansion for surrogate modelling: theory and software. Beton- und Stahlbetonbau 113(1), 27–32 (2018). https://doi.org/10.1002/best.201800048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Novák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novák, J., Chudý, P. (2024). Dynamic Soaring in Uncertain Wind Conditions: Polynomial Chaos Expansion Approach. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics