Skip to main content

A 3D Generative Model of Pathological Multi-modal MR Images and Segmentations

  • Conference paper
  • First Online:
Deep Generative Models (MICCAI 2023)

Abstract

Generative modelling and synthetic data can be a surrogate for real medical imaging datasets, whose scarcity and difficulty to share can be a nuisance when delivering accurate deep learning models for healthcare applications. In recent years, there has been an increased interest in using these models for data augmentation and synthetic data sharing, using architectures such as generative adversarial networks (GANs) or diffusion models (DMs). Nonetheless, the application of synthetic data to tasks such as 3D magnetic resonance imaging (MRI) segmentation remains limited due to the lack of labels associated with the generated images. Moreover, many of the proposed generative MRI models lack the ability to generate arbitrary modalities due to the absence of explicit contrast conditioning. These limitations prevent the user from adjusting the contrast and content of the images and obtaining more generalisable data for training task-specific models. In this work, we propose brainSPADE3D, a 3D generative model for brain MRI and associated segmentations, where the user can condition on specific pathological phenotypes and contrasts. The proposed joint imaging-segmentation generative model is shown to generate high-fidelity synthetic images and associated segmentations, with the ability to combine pathologies. We demonstrate how the model can alleviate issues with segmentation model performance when unexpected pathologies are present in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https://doi.org/10.1038/SDATA.2017.117, https://pubmed.ncbi.nlm.nih.gov/28872634/

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. Sandra Gonzlez-Vill 124 (2018). https://arxiv.org/abs/1811.02629v3

  3. Barile, B., Marzullo, A., Stamile, C., Durand-Dubief, F., Sappey-Marinier, D.: Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis. Comput. Methods Programs Biomed. 206 (2021). https://doi.org/10.1016/J.CMPB.2021.106113, https://pubmed.ncbi.nlm.nih.gov/34004501/

  4. Basaran, B.D., Matthews, P.M., Bai, W.: New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation. Front. Neurosci. 16 (2022). https://doi.org/10.3389/FNINS.2022.1007453, https://pubmed.ncbi.nlm.nih.gov/36340756/

  5. Billot, B., Magdamo, C., Arnold, S.E., Das, S., Iglesias, J.E.: Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc. Natl. Acad. Sci. 120(9), e2216399120 (2022). https://doi.org/10.1073/PNAS.2216399120/SUPPL_FILE/PNAS.2216399120.SAPP.PDF, https://arxiv.org/abs/2209.02032

  6. Cardoso, M.J., et al.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015)

    Article  Google Scholar 

  7. Chen, S., Ma, K., Zheng, Y.: MED3D: Transfer Learning for 3D Medical Image Analysis. https://github.com/Tencent/MedicalNet

  8. Consortium, M.: MONAI: Medical Open Network for AI, March 2020

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Kai, L., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255 (2010). https://doi.org/10.1109/CVPR.2009.5206848

  10. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019). https://doi.org/10.1038/s41591-018-0316-z, https://www.nature.com/articles/s41591-018-0316-z

  11. Fernandez, V., et al.: Can segmentation models be trained with fully synthetically generated data? In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) SASHIMI 2022. LNCS, vol. 13570, pp. 79–90. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-16980-9_8

    Chapter  Google Scholar 

  12. Foroozandeh, M., Eklund, A.: Synthesizing brain tumor images and annotations by combining progressive growing GAN and SPADE (2020). https://doi.org/10.48550/arxiv.2009.05946, https://arxiv.org/abs/2009.05946v1

  13. Hoogeboom, E., Heek, J., Salimans, T.: simple diffusion: end-to-end diffusion for high resolution images

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning (2015). https://doi.org/10.1016/B978-0-12-391420-0.09987-X

  15. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

  16. Jack, C.R., et al.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Resonan. Imaging (JMRI) 27(4), 685–691 (2008). https://doi.org/10.1002/JMRI.21049, https://pubmed.ncbi.nlm.nih.gov/18302232/

  17. Jones, S., et al.: Cohort profile update: southall and brent revisited (SABRE) study: a UK population-based comparison of cardiovascular disease and diabetes in people of European, South Asian and African Caribbean heritage. Int. J. Epidemiol. 49(5), 1441–1442 (2020). https://doi.org/10.1093/ije/dyaa135

  18. Liu, L., Ren, Y., Lin, Z., Zhao, Z.: Pseudo numerical methods for diffusion models on manifolds (2022). https://doi.org/10.48550/arxiv.2202.09778, https://arxiv.org/abs/2202.09778v2

  19. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694, https://pubmed.ncbi.nlm.nih.gov/25494501, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833122/

  20. Park, T., et al.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of IEEE CVPR, June 2019, pp. 2332–2341 (2019)

    Google Scholar 

  21. Pinaya, W.H.L., et al.: Brain Imaging Generation with Latent Diffusion Models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) DGM4MICCAI 2022. LNCS, vol. 13609, pp. 117–126. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_12

    Chapter  Google Scholar 

  22. Qasim, A.B., et al.: Red-GAN: attacking class imbalance via conditioned generation. Yet another medical imaging perspective (2020). https://proceedings.mlr.press/v121/qasim20a.html

  23. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 119 (2020)

    Google Scholar 

  24. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models

    Google Scholar 

  25. Sudre, C.H., Cardoso, M.J., Bouvy, W.H., Biessels, G.J., Barnes, J., Ourselin, S.: Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE Trans. Med. Imaging 34(10), 2079–2102 (2015). https://doi.org/10.1109/TMI.2015.2419072

    Article  Google Scholar 

  26. Tudosiu, P.D., et al.: Morphology-preserving autoregressive 3d generative modelling of the brain. In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) SASHIMI 2022. LNCS, vol. 13570, pp. 66–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16980-9_7

    Chapter  Google Scholar 

  27. Wachinger, C., et al.: BrainPrint: a discriminative characterization of brain morphology. NeuroImage 109, 232–248 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Fernandez .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 331 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandez, V., Pinaya, W.H.L., Borges, P., Graham, M.S., Vercauteren, T., Cardoso, M.J. (2024). A 3D Generative Model of Pathological Multi-modal MR Images and Segmentations. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. MICCAI 2023. Lecture Notes in Computer Science, vol 14533. Springer, Cham. https://doi.org/10.1007/978-3-031-53767-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53767-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53766-0

  • Online ISBN: 978-3-031-53767-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics