Skip to main content

Visualization Techniques in VR for Vocational Education: Comparison of Realism and Diegesis on Performance, Memory, Perception and Perceived Usability

  • Conference paper
  • First Online:
Soft Computing and Its Engineering Applications (icSoftComp 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2030))

  • 92 Accesses

Abstract

Designing highly realistic and immersive virtual reality (VR) environments has become crucial for enhancing the user experience within human-machine interactions. However, there is limited research regarding the utilization, impact, and influence of different visualization techniques in VR concerning cognition and behavior. This experimental study compares two scenarios: a low-realism (LR) scenario with non-diegetic visual elements and a high-realism (HR) scenario with diegetic visual elements. The experimental context pertains to young jobseekers’ training and skills development in the construction industry. The findings indicate that an HR scenario contributes to enhancing memory but may reduce perceived usability if a proper feedback system related to diegetic elements is not implemented. Furthermore, an LR scenario can foster effective immersion if the diegetic narrative remains consistent and a high level of interaction is present, enabling a more inclusive design and making learning more accessible to individuals requiring a lower level of detail. Despite the limitation of a limited number of participants, the results aim to contribute to the establishment of visualization strategies in VR for vocational education and training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman, M., Gatersleben, B., Wyles, K., Ratcliffe, E.: The use of virtual reality in environment experiences and the importance of realism. J. Environ. Psychol. 79, 101733 (2022)

    Article  Google Scholar 

  2. Caputo, F., Greco, A., D’Amato, E., Notaro, I., Spada, S.: On the use of Virtual Reality for a human-centered workplace design. Proc. Struct. Integrit. 8, 297–308 (2018)

    Google Scholar 

  3. Jalote-Parmar, A., Badke-Schaub, P., Wajid, A., Samset, E.: Cognitive processes as the foundation towards developing an intra-operative visualization system. J. Biomed. Inform. 43(1), 60–74 (2010)

    Article  Google Scholar 

  4. Nava, E., Jalote-Parmar, A.: Virtual reality revolution: strategies for treating mental and emotional disorders. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, pp. 3373–3378 (2022)

    Google Scholar 

  5. Kari, T., Kosa, M.: Acceptance and use of virtual reality games: an extension of HMSAM. Virtual Reality (2023)

    Google Scholar 

  6. Halabi, O.: Immersive virtual reality to enforce teaching in engineering education. Multim. Tools Appl. 79(3–4), 2987–3004 (2019). https://doi.org/10.1007/s11042-019-08214-8

    Article  Google Scholar 

  7. Xie, B., et al.: A review on virtual reality skill training applications. Front. Virt. Reality 2, 645153 (2021)

    Article  Google Scholar 

  8. Hvass, J., Larsen, O., Vendelbo, K., Nilsson, N., Nordahl, R., Serafin, S.: Visual realism and presence in a virtual reality game. In: 3DTV Conference the True Vision - Capture, Transmission and Display of 3D Video, Copenhagen, pp. 1–4 (2017)

    Google Scholar 

  9. McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Visual. Comput. Graph. 18(4), 626–633 (2012)

    Google Scholar 

  10. Stevens, J., Kincaid, J.: The relationship between presence and performance in virtual simulation training. Open J. Model. Simulat. 03, 41–48 (2015)

    Article  Google Scholar 

  11. Essoe, J.K., Reggente, N., Ohno, A.A., Baek, Y.H., Rissman, J.: Enhancing learning and retention with distinctive virtual reality environments and mental context reinstatement. NPJ Sci. Learn. 7(1), 1–14 (2022)

    Article  Google Scholar 

  12. Cadet, L.B., Reynaud, E., Chainay, H.: Memory for a Virtual Reality Experience in Children and Adults According to Image Quality, Emotion, and Sense of Presence, pp. 55–75 (2022)

    Google Scholar 

  13. Schott, C., Marshall, S.: Virtual reality and situated experiential education: a conceptualization and exploratory trial. Comput. Assist. Learn. 34(6), 843–852 (2018)

    Article  Google Scholar 

  14. Toyoda, R., Russo-AbegĂŁo, F., Glassey, J.: VR-based health and safety training in various high-risk engineering industries: a literature review. Int. J. Educ. Technol. High. Educ. (2022)

    Google Scholar 

  15. Xu, Z., Zheng, N.: Incorporating virtual reality technology in safety training solution for construction site of urban cities. Sustainability 13(1), 243 (2020)

    Article  MathSciNet  Google Scholar 

  16. Osti, F., de Amicis, R., Sanchez, C.A., et al.: A VR training system for learning and skills development for construction workers. Virtual Reality 25(4), 523–538 (2021)

    Article  Google Scholar 

  17. Howard, M.C., Gutworth, M.G., Jacobs, R.R.: A meta-analysis of virtual reality training programs. Comput. Human Behav. (2021)

    Google Scholar 

  18. Prasolova-Førland, E., Fominykh, M., Ekelund, O.I.: Empowering young job seekers with virtual reality. In: IEEE Conference on Virtual Reality and 3D User Interfaces, Osaka, pp. 295–302 (2019)

    Google Scholar 

  19. Baek, S., Gil, H., Kim, Y.: VR-based job training system using tangible interactions. Sensors, Basel, Switzerland (2021)

    Google Scholar 

  20. Toyoda, R., Glassey, J.: VR-based health and safety training in various high-risk engineering industries: a literature review. Int. J. Educ. Technol. High. Educ. 19(1), 1–22 (2022)

    Article  Google Scholar 

  21. Chellappa, V., Mésároš, P., Spak, M., Spisakova, M., Kaleja, P.: VR-based safety training research in construction. IOP Conf. Ser. Mater. Sci. Eng. 1252, 012058 (2022)

    Google Scholar 

  22. IMTEL. https://www.ntnu.edu/imtel/virtual-internship. Accessed 25 May 2023

  23. NTNU, VR4VET Project. https://www.vr4vet.eu/. Accessed 25 May 2023

  24. Fominykh, M., Prasolova-Førland, E.: Immersive job taste: a concept of demonstrating workplaces with virtual reality. In: IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1600–1605 (2019)

    Google Scholar 

  25. Chavez, B., Bayona, S.: Virtual reality in the learning process. In: Chavez, B., Bayona, S. (eds.) Virtual Reality in the Learning Process, Advances in Intelligent Systems and Computing, vol. 746, pp. 1345–1356 (2018)

    Google Scholar 

  26. Kwon, C.: Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Reality 23(1), 101–118 (2018)

    Article  Google Scholar 

  27. Petersen, G.B., Petkakis, G., Makransky, G.: A study of how immersion and interactivity drive VR learning. Comput. Educ. 179, 104429 (2022)

    Article  Google Scholar 

  28. Fromm, J., Radianti, J., Wehking, C., Stieglitz, S., Majchrzak, T.A., Vom Brocke, J.: More than experience? - on the unique opportunities of virtual reality to afford a holistic experiential learning cycle. Internet High. Educ. 50, 100804 (2021)

    Article  Google Scholar 

  29. Su, C.-H., Cheng, T.-W.: A sustainability innovation experiential learning model for virtual reality chemistry laboratory: an empirical study with PLS-SEM and IPMA. Sustainability 11(1), 1–24 (2019)

    Google Scholar 

  30. Strojny, P., Dużmańska-Misiarczyk, N.: Measuring the effectiveness of virtual training: a systematic review. Comput. Educ. X Reality 2, 100006 (2023)

    Article  Google Scholar 

  31. Coleman, B., Marion, S., Rizzo, A., Turnbull, J., Nolty, A.: Virtual reality assessment of classroom - related attention: an ecologically relevant approach to evaluating the effectiveness of working memory training. Front. Psychol. 10, 1851 (2019)

    Article  Google Scholar 

  32. Korkut, E.H., Surer, E.: Visualization in virtual reality: a systematic review. Virtual Reality 27, 1447–1480 (2023)

    Article  Google Scholar 

  33. Jiang, F., Haddad, D.D., Paradiso, J.: Baguamarsh: an immersive narrative visualization for conveying subjective experience. In: Kurosu, M. (ed.) HCII 2020. LNCS, vol. 12181, pp. 596–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49059-1_44

    Chapter  Google Scholar 

  34. Al-Jundi, H.A., Tanbour, E.Y.: A framework for fidelity evaluation of immersive virtual reality systems. Virtual Reality 26, 1103–1122 (2022)

    Article  Google Scholar 

  35. McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Visual. Comput. Graph. 4(4), 626–633 (2012)

    Google Scholar 

  36. Rogers, K., Funke, J., Frommel, J., Stamm, S., Weber, M.: Exploring interaction fidelity in virtual reality: object manipulation and whole-body movements. In: ACM CHI Conference on Human Factors in Computing Systems (2019)

    Google Scholar 

  37. McMahan, R.P., Lai, C., Pal, S.K.: Interaction fidelity: the uncanny valley of virtual reality interactions. In: Lackey, S., Shumaker, R. (eds.) VAMR 2016. LNCS, vol. 9740, pp. 59–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39907-2_6

    Chapter  Google Scholar 

  38. Li, C., Ip, H.H.S., Ma, P.K.: A design framework of virtual reality enabled experiential learning for children with autism spectrum disorder. In: Blended Learning: Educational Innovation for Personalized Learning, vol. 11546, pp. 93–102. Springer, Cham (2019)

    Google Scholar 

  39. Zhao, Y., Cutrell, E., Holz, C., Morris, M.R., Ofek, E., Wilson, A.D.: SeeingVR: a set of tools to make virtual reality more accessible to people with low vision. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (2019)

    Google Scholar 

  40. Gottsacker, M., Norouzi, N., Kim, K., Bruder, G., Welch, G.: Diegetic representations for seamless cross-reality interruptions. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, pp. 310–319 (2021)

    Google Scholar 

  41. Saling, F., Bernhardt, D., Lysek, A., Smekal, M.: Diegetic vs. non-diegetic GUIs: what do virtual reality players prefer?. Artif. Reality Telexistence (2021)

    Google Scholar 

  42. Marre, Q., Caroux, L., Sakdavong, J.C.: Video game interfaces and diegesis: the impact on experts and novices’ performance and experience in virtual reality. Int. J. Human-Comput. Interact. 37, 1089–1103 (2021)

    Article  Google Scholar 

  43. Beck, T., Rothe, S.: Applying diegetic cues to an interactive virtual reality experience. In: IEEE Conference on Games (CoG), Copenhagen (2021)

    Google Scholar 

  44. Leroux, E., Caroux, L., Sakdavong, J.C.: Diegetic display, player performance and presence in virtual reality video games. In: 11th International Conference on Applied Human Factors and Ergonomics (2020)

    Google Scholar 

  45. Dickinson, P., Cardwell, A., Parke, A., Gerling, K, Murray, J.: Diegetic tool management in a virtual reality training simulation. In: IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, pp. 131–139 (2021)

    Google Scholar 

  46. Jerald, J.: Human-centered design for immersive interactions. In: IEEE Virtual Reality (VR), Los Angeles, pp. 431–432 (2017)

    Google Scholar 

  47. Boletsis, C.: A user experience questionnaire for VR locomotion: formulation and preliminary evaluation. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2020. LNCS, vol. 12242, pp. 157–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58465-8_11

    Chapter  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the IMTEL (Innovative Immersive Technologies for Learning) research group for their collaboration and support during this study, for providing us with access to the laboratory facilities and essential research instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nava, E., Jalote-Parmar, A. (2024). Visualization Techniques in VR for Vocational Education: Comparison of Realism and Diegesis on Performance, Memory, Perception and Perceived Usability. In: Patel, K.K., Santosh, K., Patel, A., Ghosh, A. (eds) Soft Computing and Its Engineering Applications. icSoftComp 2023. Communications in Computer and Information Science, vol 2030. Springer, Cham. https://doi.org/10.1007/978-3-031-53731-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53731-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53730-1

  • Online ISBN: 978-3-031-53731-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics