Skip to main content

Novel Channel Fuzzy Logic System Modeling for Aquatic Acoustic Wireless Communication Within a Tank

  • Conference paper
  • First Online:
Soft Computing and Its Engineering Applications (icSoftComp 2023)

Abstract

This research explores underwater wireless communication in confined spaces, specifically water tanks, departing from the common focus on seawater in 5G networks. The study employs a unique system model using fuzzy logic techniques to analyze the impact of underwater applications. Unlike traditional sonar models, the approach emphasizes secured data transmission based on constraint statements, addressing signal attenuation in sodium chloride-saturated tanks. A tailored attenuation model and a multipath propagation model are developed to counter challenges like inter-symbol interference and protocol latency. Considering the tank’s properties, a channel propagation model is designed for reliable communication. The study introduces a Wireless Channel propagation model to calculate signal coverage area. Using the Fuzzy Logic tool in MATLAB, simulations evaluate attenuation, multipath components, and coverage area for acoustic signals in the underwater frequency range. Fuzzy logic analysis provides comprehensive insights into underwater communication dynamics, specifically assessing the attenuation of acoustic frequency signals.

Supported by CHARUSAT and Dr. Subhash University

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M.F., Jayakody, D.N.K., Chursin, Y.A., Affes, S., Dmitry, S.: Recent advances and future directions on underwater wireless communications. Arch. Comput. Methods Eng. 27, 1379–1412 (2020)

    Article  Google Scholar 

  2. Patel, A., et al.: UWB CPW fed 4-port connected ground MIMO antenna for sub-millimeter-wave 5G applications. Alex. Eng. J. 61(9), 6645–6658 (2022)

    Article  Google Scholar 

  3. Patel, S., Patel, R., Bhalani, J.: Performance Analysis & implementation of different modulation techniques in Almouti MIMO scheme with Rayleigh channel. In: International Conference on Recent Trends in Computing and Communication Engineering (2013)

    Google Scholar 

  4. Patel, S.B., Bhalani, J., Trivedi, Y.N.: Performance of full rate non-orthogonal STBC in spatially correlated MIMO systems. Radioelectron. Commun. Syst. 63, 88–95 (2020)

    Article  Google Scholar 

  5. Saraswala, P.P., Patel, S.B., Bhalani, J.K.: Performance metric analysis of transmission range in the ZigBee network using various soft computing techniques and the hardware implementation of ZigBee network on ARM-based controller. Wireless Netw. 27(3), 2251–2270 (2021)

    Article  Google Scholar 

  6. Patel, S., Dwivedi, V.V., Kosta, Y.P.: A parametric characterization and comparative study of Okumura and Hata propagation-loss-prediction models for wireless environment. Int. J. Electr. Eng. Res. 2(4), 453–463 (2010)

    Google Scholar 

  7. Lurton, X.: An introduction to underwater acoustics: principles and applications. Noise Control Eng. J. 59(1), 106 (2011)

    Article  Google Scholar 

  8. Jiang, Z.: Underwater acoustic networks-issues and solutions. Int. J. Intell. Control Syst. 13(3), 152–161 (2008)

    Google Scholar 

  9. Stojanovic, M.: Underwater Acoustic Communication. Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley and Sons (2015)

    Google Scholar 

  10. Porter, M.B.: Beam tracing for two-and three-dimensional problems in ocean acoustics. J. Acoust. Soc. Am. 146(3), 2016–2029 (2019)

    Article  Google Scholar 

  11. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  12. Francois, R.E., Garrison, G.R.: Sound absorption based on ocean measurements, part II: Boric acid contribution and equation for total absorption of sound. J. Acoust. Soc. Am. 72, 1879–1890 (1982)

    Article  Google Scholar 

  13. Francois, R.E., Garrison, G.R.: Sound absorption based on ocean measurements: part I: pure water and magnesium sulfate contributions. J. Acoust. Soc. Am. 72(3), 896–907 (1982)

    Article  Google Scholar 

  14. Burrowes, G., Khan, J.Y.: Short-range underwater acoustic communication networks. Autonomous Underwater Veh., 173–198 (2011)

    Google Scholar 

  15. Philips, S.L., Igbene, A.: A Technical databook for geothermal energy utilization. Lawrence Berkeley Laboratory, vol. 10 (1981)

    Google Scholar 

  16. Aleksandrov, A.A., Dzhuraeva, E.V., Utenkov, V.F.: Viscosity of aqueous solutions of sodium chloride. High Temp. 50(3), 354–358 (2012)

    Article  Google Scholar 

  17. Ozbek, H.: Viscosity of aqueous sodium chloride solution from 0–150 C. Lawrence Berkeley Laboratory (2010)

    Google Scholar 

  18. Panchal, S.S., Pabari, J.P.: Evaluation of shallow underwater acoustical communication model for attenuation and propagation loss for aqueous solution of sodium chloride. In: 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), pp. 1–5. IEEE (2019)

    Google Scholar 

  19. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics, Fundamental and Large Scale Circulation. Cambridge University Press, Cambridge, vol. 842, no. 2 (1995)

    Google Scholar 

  20. Zielinski, A., Yoon, Y.H., Wu, L.: Performance analysis of digital acoustic communication in a shallow water channel. IEEE J. Oceanic Eng. 20(4), 293–299 (1995)

    Article  Google Scholar 

  21. Patzold, M., Szczepanski, A., Youssef, N.: Methods for modeling of specified and measured multipath power-delay profiles. IEEE Trans. Veh. Technol. 51(5), 978–988 (2002)

    Article  Google Scholar 

  22. Panchal, S.S., Dwivedi, V.V., Pabari, J.P.: Design of attenuation loss and multipath propagation model for underwater acoustic communication in tank. Int. J. Recent Technol. Eng. (IJRTE) (2020)

    Google Scholar 

  23. Kulhandjian, H., Melodia, T.: Modeling underwater acoustic channels in short-range shallow water environments. In: Proceedings of the 9th International Conference on Underwater Networks & Systems, pp. 1–5 (2014)

    Google Scholar 

  24. Paul Van Walree, P.A.: Propagation and scattering effects in underwater acoustic communication channels. IEEE J. Oceanic Eng. 38(4), 614–631 (2013)

    Article  Google Scholar 

  25. Huang, J.G., Wang, H., He, C.B., Zhang, Q.F., Jing, L.Y.: Underwater acoustic communication and the general performance evaluation criteria. Front. Inf. Technol. Electr. Eng. 19(8), 951–971 (2018)

    Article  Google Scholar 

  26. Coates, R.: An empirical formula for computing the Beckmann-Spizzichino surface reflection loss coefficient. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(4), 522–523 (1988)

    Article  Google Scholar 

  27. Yoon, Y.H.: High-rate digital acoustic communications in a shallow water channel (Doctoral dissertation) (1999)

    Google Scholar 

  28. Wong, H.: Field strength prediction in irregular terrain-the PTP model. Report of Federal Communication Commission, USA (2002)

    Google Scholar 

  29. Gibson, J.D.: The Communications Handbook. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panchal, S., Patel, S., Panchal, S. (2024). Novel Channel Fuzzy Logic System Modeling for Aquatic Acoustic Wireless Communication Within a Tank. In: Patel, K.K., Santosh, K., Patel, A., Ghosh, A. (eds) Soft Computing and Its Engineering Applications. icSoftComp 2023. Communications in Computer and Information Science, vol 2031. Springer, Cham. https://doi.org/10.1007/978-3-031-53728-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53728-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53727-1

  • Online ISBN: 978-3-031-53728-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics