Skip to main content

Travel Demand Models for Micro-Level Contact Network Modeling

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1142))

Included in the following conference series:

  • 838 Accesses

Abstract

In the pursuit of accurate infectious disease forecasting, micro-level contact modeling in contact networks emerges as a pivotal element. This research delves into the intricacies of nuanced micro-level modeling, presenting adaptable models tailored for specific locations, derived from a refined travel demand model. In our experiments, we observed that varied encounter patterns among individuals directly influence infection dynamics. Additionally, we observe distinct trends in the spreading dynamics between temporal dynamic networks and their static counterparts for certain encounter models. The study underscores the need for a deeper appreciation of micro-level encounter patterns in epidemiological modeling. Such understanding is pivotal in shaping effective interventions and public health strategies during pandemic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bmdv.bund.de/EN/Services/Statistics/Mobility-in-Germany/mobility-in-germany.html.

  2. 2.

    https://github.com/benmaier/tacoma.

References

  1. Balcan, D., Gonçalves, B., Hao, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: the GLobal epidemic and mobility computational model. J. Comput. Sci. 1(3), 132–145 (2010)

    Article  Google Scholar 

  2. Dalziel, B.D., Pourbohloul, B., Ellner, S.P.: Human mobility patterns predict divergent epidemic dynamics among cities. Proc. Roy. Soc. B: Biol. Sci. 280(1766), 20130763 (2013)

    Article  Google Scholar 

  3. Eubank, S., et al.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Article  Google Scholar 

  4. Firth, J.A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A.J., Spurgin, L.G.: Using a real-world network to model localized COVID-19 control strategies. Nat. Med. 26(10), 1616–1622 (2020)

    Article  Google Scholar 

  5. Glass, L.M., Glass, R.J.: Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health 8(1), 61 (2008)

    Article  Google Scholar 

  6. Heinrichs, M.: TAPAS: travel-activity-pattern simulation - parallelisiertes mikroskopisches verkehrsnachfragemodell. In: Next GEneration Forum 2011, pp. 74–74. Deutsches Zentrum für Luft und Raumfahrt e.V. (2011)

    Google Scholar 

  7. Hekmati, A., Luhar, M., Krishnamachari, B., Matarić, M.: Simulating COVID-19 classroom transmission on a university campus. Proc. Natl. Acad. Sci. 119(22), e2116165119 (2022)

    Article  Google Scholar 

  8. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hinch, R., et al.: OpenABM-covid19-an agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Comput. Biol. 17(7), e1009146 (2021)

    Article  Google Scholar 

  10. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  11. Kerr, C.C., et al.: Covasim: an agent-based model of COVID-19 dynamics and interventions. PLoS Comput. Biol. 17(7), e1009149 (2021)

    Article  Google Scholar 

  12. Klise, K., Beyeler, W., Finley, P., Makvandi, M.: Analysis of mobility data to build contact networks for COVID-19. PLoS ONE 16(4), e0249726 (2021)

    Article  Google Scholar 

  13. Lee, B., et al.: Designing a multi-agent occupant simulation system to support facility planning and analysis for COVID-19. In: Designing Interactive Systems Conference 2021, pp. 15–30. ACM (2021)

    Google Scholar 

  14. Leitch, J., Alexander, K.A., Sengupta, S.: Toward epidemic thresholds on temporal networks: a review and open questions. Appl. Network Sci. 4(1), 105 (2019)

    Article  Google Scholar 

  15. Liu, F., Li, X., Zhu, G.: Using the contact network model and metropolis-Hastings sampling to reconstruct the COVID-19 spread on the “diamond princess.’’. Sci. Bull. 65(15), 1297–1305 (2020)

    Article  Google Scholar 

  16. Müller, S.A., et al.: Predicting the effects of COVID-19 related interventions in urban settings by combining activity-based modelling, agent-based simulation, and mobile phone data. PLoS ONE 16(10), e0259037 (2021)

    Article  Google Scholar 

  17. Reveil, M., Chen, Y.-H.: Predicting and preventing COVID-19 outbreaks in indoor environments: an agent-based modeling study. Sci. Rep. 12(1), 16076 (2022)

    Article  Google Scholar 

  18. Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7(3), 1–9 (2011)

    Article  Google Scholar 

  19. Sharkey, K.J., et al.: Pair-level approximations to the SPATIO-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53(1), 61–85 (2006)

    Article  MathSciNet  Google Scholar 

  20. Thurner, S., Klimek, P., Hanel, R.: A network-based explanation of why most COVID-19 infection curves are linear. Proc. Natl. Acad. Sci. 117(37), 22684–22689 (2020)

    Article  Google Scholar 

  21. Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11(10), 1–28 (2015)

    Article  Google Scholar 

  22. Ying, F., O’Clery, N.: Modelling COVID-19 transmission in supermarkets using an agent-based model. PLoS ONE 16(4), e0249821 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diaoulé Diallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diallo, D., Schönfeld, J., Hecking, T. (2024). Travel Demand Models for Micro-Level Contact Network Modeling. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-031-53499-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53499-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53498-0

  • Online ISBN: 978-3-031-53499-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics