Skip to main content

The Hidden-Degree Geometric Block Model

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1143))

Included in the following conference series:

  • 823 Accesses

Abstract

Defining accurate models for real-world social networks is essential across various research fields including sociology, epidemiology, and marketing. Such models serve as indispensable tools to capture the dynamics of phenomena ranging from disease spread to rumor dissemination, encapsulating intricate patterns of interactions among individuals within a population. To this end, a latent geometry and/or hidden degrees can be used to obtain networks that are small-world, highly clustered, and have a scale-free degree distributions.

This study aims to integrate group mixing within the framework of latent geometry models. Our approach is based on conceptualizing a graph with a planted partition as the union of different mono- and bipartite subgraphs, for intra- and inter-block edges, respectively. We highlight that the hidden degree – the analogous of the radial coordinate in purely geometric hyperbolic models – must be replaced by a hidden fitness, and that all latent features must be assigned to the nodes once and for all, rather than once for each subgraph.

Through extensive simulations, we show that the proposed model generates networks with a unique combination of features, that cannot be obtained with standard geometric models nor with maximum entropy degree-corrected block models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeling, M.: The implications of network structure for epidemic dynamics. Theor. Popul. Biol. 67(1), 1–8 (2005)

    Article  Google Scholar 

  2. Ribeiro, H.V., Sunahara, A.S., Sutton, J., Perc, M., Hanley, Q.S.: City size and the spreading of COVID-19 in Brazil. PLoS ONE 15(9), e0239699 (2020)

    Article  Google Scholar 

  3. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. 103(7), 2015–2020 (2006)

    Article  Google Scholar 

  4. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  5. Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., Caldarelli, G.: The statistical physics of real-world networks. Nat. Rev. Phys. 1(1), 58–71 (2019)

    Article  Google Scholar 

  6. Serrano, M.A., Krioukov, D., Boguná, M.: Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100(7), 078701 (2008)

    Article  Google Scholar 

  7. Squartini, T., Garlaschelli, D.: Analytical maximum-likelihood method to detect patterns in real networks. New J. Phys. 13(8), 083001 (2011)

    Article  Google Scholar 

  8. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  9. Krioukov, D.: Clustering implies geometry in networks. Phys. Rev. Lett. 116, 208302 (2016)

    Article  MathSciNet  Google Scholar 

  10. Serrano, M.A., Boguná, M.: The shortest path to network geometry: a practical guide to basic models and applications, elements in structure and dynamics of complex networks. Camb. Univ. Press Camb. Engl. 10, 9781108865791 (2022)

    Google Scholar 

  11. Boguna, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., Serrano, M.: Network geometry. Nat. Rev. Phys. 3(2), 114–135 (2021)

    Article  Google Scholar 

  12. Désy, B., Desrosiers, P., Allard, A.: Dimension matters when modeling network communities in hyperbolic spaces. PNAS Nexus 2(5), pgad136 (2023)

    Google Scholar 

  13. Kertész, J., Török, J., Murase, Y., Jo, H.-H., Kaski, K.: Modeling the complex network of social interactions. In: Rudas, T., Péli, G. (eds.) Pathways Between Social Science and Computational Social Science. CSS, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54936-7_1

    Chapter  Google Scholar 

  14. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  15. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011)

    Article  MathSciNet  Google Scholar 

  16. Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014)

    Google Scholar 

  17. Fronczak, P., Fronczak, A., Bujok, M.: Exponential random graph models for networks with community structure. Phys. Rev. E 88, 032810 (2013)

    Article  Google Scholar 

  18. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70(6), 066117 (2004)

    Article  MathSciNet  Google Scholar 

  19. Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 192–215 (2007)

    Article  Google Scholar 

  20. Garlaschelli, D., Loffredo, M.I.: Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 93(18), 188701 (2004)

    Article  Google Scholar 

  21. Bernaschi, M., Celestini, A., Guarino, S., Mastrostefano, E., Saracco, F.: The fitness-corrected block model, or how to create maximum-entropy data-driven spatial social networks. Sci. Rep. 12(1), 18206 (2022)

    Article  Google Scholar 

  22. Kitsak, M., Papadopoulos, F., Krioukov, D.: Latent geometry of bipartite networks. Phys. Rev. E 95, 032309 (2017)

    Article  Google Scholar 

  23. Alstott, J., Bullmore, E., Plenz, D.: PowerLaw: a python package for analysis of heavy-tailed distributions. PLoS ONE 9(1), e85777 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarino, S., Mastrostefano, E., Torre, D. (2024). The Hidden-Degree Geometric Block Model. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-031-53472-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53472-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53471-3

  • Online ISBN: 978-3-031-53472-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics