Skip to main content

Sparse Graph Neural Networks with Scikit-Network

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1141))

Included in the following conference series:

  • 972 Accesses

Abstract

In recent years, Graph Neural Networks (GNNs) have undergone rapid development and have become an essential tool for building representations of complex relational data. Large real-world graphs, characterised by sparsity in relations and features, necessitate dedicated tools that existing dense tensor-centred approaches cannot easily provide. To address this need, we introduce a GNNs module in Scikit-network, a Python package for graph analysis, leveraging sparse matrices for both graph structures and features. Our contribution enhances GNNs efficiency without requiring access to significant computational resources, unifies graph analysis algorithms and GNNs in the same framework, and prioritises user-friendliness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/sknetwork-team/scikit-network.

  2. 2.

    We rely on the number of forks associated with each package on GitHub as a metric to gauge library usage. Please note that this metric provides only a partial view of actual project usage.

  3. 3.

    https://netset.telecom-paris.fr/.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Statist. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/p10008

  3. Bonald, T., De Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: graph analysis in python. J. Mach. Learn. Res. 21(1), 7543–7548 (2020)

    Google Scholar 

  4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  5. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  6. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  7. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017)

  8. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266 (2019)

    Google Scholar 

  9. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  10. Data61, C.: Stellargraph machine learning library (2018). https://github.com/stellargraph/stellargraph

  11. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  12. Fey, M., Lenssen, J.E., Weichert, F., Leskovec, J.: Gnnautoscale: scalable and expressive graph neural networks via historical embeddings. In: International Conference on Machine Learning, pp. 3294–3304. PMLR (2021)

    Google Scholar 

  13. Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: Sign: scalable inception graph neural networks. arXiv preprint arXiv:2004.11198 (2020)

  14. Grattarola, D., Alippi, C.: Graph neural networks in tensorflow and keras with spektral [application notes]. IEEE Comput. Intell. Mag. 16(1), 99–106 (2021)

    Article  Google Scholar 

  15. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using networkx. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos (2008)

    Google Scholar 

  16. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Pocess. Syst. 30 (2017)

    Google Scholar 

  17. Harris, C.R., et al.: Array programming with numpy. Nature 585(7825), 357–362 (2020)

    Google Scholar 

  18. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020)

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  20. Liu, M., et al.: Dig: a turnkey library for diving into graph deep learning research. J. Mach. Learn. Res. 22(1), 10873–10881 (2021)

    Google Scholar 

  21. Lutz, Q.: Graph-based contributions to machine-learning. Theses, Institut Polytechnique de Paris (2022). https://theses.hal.science/tel-03634148

  22. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bring order to the web. Tech. rep., Technical report, Stanford University (1998)

    Google Scholar 

  23. Paszke, A.,et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  24. Peixoto, T.P.: The graph-tool python library. Figshare (2014). https://doi.org/10.6084/m9.figshare.1164194

    Article  Google Scholar 

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  26. Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

  27. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

  28. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  29. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  30. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019)

Download references

Acknowledgements

The authors would like to thank Tiphaine Viard for the numerous discussions, as well as her insightful comments and suggestions about the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Delarue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delarue, S., Bonald, T. (2024). Sparse Graph Neural Networks with Scikit-Network. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53468-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53467-6

  • Online ISBN: 978-3-031-53468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics