Skip to main content

CO2 Capture of Concrete Waste Fines Through Wet Carbonation Under Seawater

  • Conference paper
  • First Online:
Smart & Sustainable Infrastructure: Building a Greener Tomorrow (ISSSI 2023)

Part of the book series: RILEM Bookseries ((RILEM,volume 48))

Included in the following conference series:

  • 361 Accesses

Abstract

The growing concern over the increase in atmospheric CO2 concentrations has led to the development of innovative methods for its storage and utilization. One promising approach is to store CO2 in seawater, which can dissolve and store large amounts of CO2. Recent technological advances have facilitated the rapid storage of CO2 in concrete waste through wet carbonation. Therefore, combining these two approaches has been proposed to achieve effective CO2 storage while also addressing the issue of concrete waste. In this study, we investigate the feasibility of wet carbonation of concrete waste fines under seawater, compared to pure water, for CO2 capture. The experimental results indicated that seawater eluted a considerable amount of calcium and other elements from concrete waste, which were approximately 2–3 times higher than those in deionized water. However, the concentration of Si dissolved from cement paste carbonated in seawater was found to be lower than that in deionized water. Furthermore, the phase assemblage evolution in cement paste during wet carbonation in seawater exhibits a similar trend to that in deionized water but with a faster rate of hydrated phase decomposition. Wet carbonation of concrete waste in seawater exposure results in the emergence of new phases in concrete, including Friedel's salt and halite. The rapid decomposition during wet carbonation in seawater increases the amorphous phase in cement paste, even though the decomposition of C-S-H is completed. Moreover, wet carbonation in seawater was observed to sequester a larger amount of CO2 in both the concrete waste and solution compared to deionized water. These findings provide valuable insights into the potential of seawater for carbon capture and utilization and contribute to the development of efficient and effective CO2 capture technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew, R.M.: Global CO2 emissions from cement production. Earth Syst. Sci. Data. 10(1), 195–217 (2018)

    Article  Google Scholar 

  2. ben Ghacham, A., Cecchi, E., Pasquier, L.C., Blais, J.F., Mercier, G.: CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes. Academic Press (2015)

    Google Scholar 

  3. Stefaniuk, D., Hajduczek, M., Weaver, J.C., Ulm, F.J., Masic, A., Xu, Y.-J.: Cementing CO2 into C-S-H: A step toward concrete carbon neutrality. PNAS Nexus. 2(3) (2023)

    Google Scholar 

  4. Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Mac Dowell, N., et al.: Carbon capture and storage update. Energy Environ. Sci. 7(1), 130–189 (2014)

    Article  Google Scholar 

  5. Yan, J.: Carbon Capture and Storage (CCS). Appl. Energy 148, A1–A6 (2015)

    Article  Google Scholar 

  6. Bui, N.K., et al.: Effects of particle size distribution on the performance of calcium carbonate concrete. J. Adv. Concr. Technol. 20(11), 691–702 (2022)

    Article  Google Scholar 

  7. Maruyama, I., et al.: A new concept of calcium carbonate concrete using demolished concrete and CO 2. J. Adv. Concr. Technol. 19, 1052–1060 (2021)

    Article  Google Scholar 

  8. Mostazid, Md.I., Sakai, Y.: Low-carbon footprint approach to produce recycled compacted concrete. Ceramics International (2023)

    Google Scholar 

  9. Kien Bui, N., et al.: Wet-carbonation-based mineral extraction and CO2 sequestration using concrete waste fines at a low temperature. J. Adv. Concr. Technol. 21, 166–188 (2023)

    Article  Google Scholar 

  10. Zajac, M., Skibsted, J., Durdzinski, P., Bullerjahn, F., Skocek, J., Ben Haha, M.: Kinetics of enforced carbonation of cement paste. Cem. Concr. Res. 131, 106013 (2020)

    Article  Google Scholar 

  11. Ho, H.J., Iizuka, A., Shibata, E., Tomita, H., Takano, K., Endo, T.: CO2 utilization via direct aqueous carbonation of synthesized concrete fines under atmospheric pressure. ACS Omega 5(26), 15877–15890 (2020)

    Article  Google Scholar 

  12. Zajac, M., Skibsted, J., Bullerjahn, F., Skocek, J.: Semi-dry carbonation of recycled concrete paste. J. CO2 Utilization 63, 102111 (2022)

    Google Scholar 

  13. Zajac, M., et al.: Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cement Concrete Res. 130 105990 (2020)

    Google Scholar 

  14. Shen, P., et al.: Phase assemblance evolution during wet carbonation of recycled concrete fines. Cem. Concr. Res. 154(January), 106733 (2022)

    Article  Google Scholar 

  15. Jeon, J., Kim, M.J.: CO2 storage and CaCO3 production using seawater and an alkali industrial by-product. Chem. Eng. J. 378, 122180 (2019)

    Article  Google Scholar 

  16. Li, H., et al.: Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2. Energy 238 (2022)

    Google Scholar 

  17. Ho, H.J., Iizuka, A.: Mineral carbonation using seawater for CO2 sequestration and utilization: a review. Sep. Purif. Technol. 307, 122855 (2023)

    Article  Google Scholar 

  18. Pokrovsky, O.S.: Kinetics of CaCO3 homogeneous precipitation in seawater. 738 Mineralogical Mag. 58 (n.d.)

    Google Scholar 

  19. Xie, H., et al.: Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates. Environ. Earth Sci. 73(11), 6881–6890 (2015)

    Article  Google Scholar 

  20. Li, H., et al.: Study of CO2 capture by seawater and its reinforcement. Energy 164, 1135–1144 (2018)

    Article  Google Scholar 

  21. Sobotka, A., Sagan, J.: Decision support system in management of concrete demolition waste. Autom. Constr. 128, 103734 (2021)

    Article  Google Scholar 

  22. Bui, N.K., Satomi, T., Takahashi, H.: Influence of industrial by-products and waste paper sludge ash on properties of recycled aggregate concrete. J. Clean. Prod. 214, 403–418 (2019)

    Article  Google Scholar 

  23. Ho, H.J., Iizuka, A., Shibata, E., Tomita, H., Takano, K., Endo, T.: Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: influences of the solid–liquid ratio and CO2 concentration. J. Clean. Prod. 312, 127832 (2021)

    Article  Google Scholar 

  24. Matsumoto, M., Fukunaga, T., Onoe, K.: Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chem. Eng. Res. Des. 88(12), 1624–1630 (2010)

    Article  Google Scholar 

  25. Zajac, M., Skibsted, J., Durdzinski, P., Ben Haha, M.: Effect of alkalis on products of enforced carbonation of cement paste. Constr. Build. Mater. 291, 123203 (2021)

    Article  Google Scholar 

  26. De Weerdt, K., Justnes, H.: The effect of sea water on the phase assemblage of hydrated cement paste. Cement Concr. Compos. 55, 215–222 (2015)

    Article  Google Scholar 

  27. Weerdt, K.: Chloride binding in concrete: recent investigations and recognised knowledge gaps: RILEM Robert L’Hermite Medal Paper 2021. Mater. Struct. 54(6), 1–16 (2021). https://doi.org/10.1617/s11527-021-01793-9

    Article  Google Scholar 

  28. Shi, Z., et al.: Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem. Concr. Res. 95, 205–216 (2017)

    Article  Google Scholar 

  29. Berner, R.A.: The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta 39(4) (1975)

    Google Scholar 

  30. Pujiastuti, C., Sumada, K., Ngatilah, Y., Hadi, P.: Removal of Mg2+, K+, SO4–2 ions from seawater by precipitation method. MATEC Web Conf. 58, 01022 (2016)

    Google Scholar 

  31. Irving, L.: The precipitation of calcium and magnesium from sea water.*. J. Marine Biol. Assoc. 14(2), 441–446 (1926)

    Google Scholar 

  32. Dobberschütz, S., et al.: The mechanisms of crystal growth inhibition by organic and inorganic inhibitors (n.d.)

    Google Scholar 

  33. Nielsen, M.R., et al.: Inhibition of calcite growth: combined effects of Mg2+ and SO42-. Cryst. Growth Des. 16(11), 6199–6207 (2016)

    Article  Google Scholar 

  34. Pan, Y., Li, Y., Ma, Q., He, H., Wang, S., Sun, Z., et al.: The role of Mg2+ in inhibiting CaCO3 precipitation from seawater. Mar. Chem. 237, 104036 (2021)

    Article  Google Scholar 

  35. Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffé, B., Guyot, F.: Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem. Geol. 265(1–2), 63–78 (2009)

    Article  Google Scholar 

  36. Sun, W., Jayaraman, S., Chen, W., Persson, K.A., Ceder, G.: Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl. Acad. Sci. 112(11), 3199–3204 (2015)

    Article  Google Scholar 

  37. De Weerdt, K., Bernard, E., Kunther, W., Pedersen, M.T., Lothenbach, B.: Phase changes in cementitious materials exposed to saline solutions. Cem. Concr. Res. 165, 107071 (2023)

    Article  Google Scholar 

  38. De Weerdt, K., Lothenbach, B., Geiker, M.R.: Comparing chloride ingress from seawater and NaCl solution in Portland cement mortar. Cem. Concr. Res. 115, 80–89 (2019)

    Article  Google Scholar 

  39. Yan, Y., et al.: Effect of alkali hydroxide on calcium silicate hydrate (C-S-H) (2021)

    Google Scholar 

  40. L’hôpital, E., Lothenbach, B., Scrivener, K., Kulik, D.A.: Alkali uptake in calcium alumina silicate hydrate (C-A-S-H) (2016)

    Google Scholar 

  41. Loser, R., Lothenbach, B., Leemann, A., Tuchschmid, M.: Chloride resistance of concrete and its binding capacity - comparison between experimental results and thermodynamic modeling. Cement Concr. Compos. 32(1), 34–42 (2010)

    Article  Google Scholar 

  42. Zajac, M., Skibsted, J., Lothenbach, B., Bullerjahn, F., Skocek, J., Ben Haha, M.: Effect of sulfate on CO2 binding efficiency of recycled alkaline materials. Cem. Concr. Res. 157, 106804 (2022)

    Article  Google Scholar 

  43. Harashima, A., Ito, K.: The conditions of ettringite formation by the reaction of a blast furnace slag with aqueous alkaline solutions. ISIJ Int. 56(10), 1738–1745 (2016)

    Article  Google Scholar 

  44. Kharchenco, I., Alekseev, V.: Effect of ettringite morphology on the properties of expanding cement systems (n.d.)

    Google Scholar 

  45. Luo, X., Li, X., Wei, C., Deng, Z., Li, M.: Use of Ca-containing industrial waste brine for CO2 sequestration and recovery of NaCl and Na2SO4. Sep. Purif. Technol. 303, 122208 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the NEDO Moonshot project from Japan Science and Technology Agency, “Research on C4S, Calcium Carbonate Circulation System for Construction”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Kien Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, N.K., Kurihara, R., Noguchi, T., Maruyama, I. (2024). CO2 Capture of Concrete Waste Fines Through Wet Carbonation Under Seawater. In: Banthia, N., Soleimani-Dashtaki, S., Mindess, S. (eds) Smart & Sustainable Infrastructure: Building a Greener Tomorrow. ISSSI 2023. RILEM Bookseries, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-031-53389-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53389-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53388-4

  • Online ISBN: 978-3-031-53389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics