Skip to main content

Gait Recognition Based on Temporal Gait Information Enhancing

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

  • 427 Accesses

Abstract

Gait recognition is a long range biometric technology that identifies individuals by their walking patterns. Currently, gait recognition primarily extracts gait features using convolutional neural networks, which are based on either the global appearance or local human body regions. However, the global feature methods are lack of long range interactions in different local regions and lose temporal features by some extent, and the local feature method segmenting gait silhouettes into blocks limits the ability to characterize local feature weights. In this paper, we propose a gait recognition method that enhances interactions between local regions. To implement this method, we construct a new feature enhancement module, which is a global and local feature extractor based on SENet (GLFES), to enhance the recognition of local features using the attention mechanism. Extensive experiments based on our proposed method have been conducted on the public datasets CASIA-B and OUMVLP to achieve state-of-the-art performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben, X., Gong, C., Zhang, P., Yan, R., Wu, Q., Meng, W.: Coupled bilinear discriminant projection for cross-view gait recognition. IEEE Trans. Circuits Syst. Video Technol. 30(3), 734–747 (2019)

    Article  Google Scholar 

  2. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126–8133 (2019)

    Google Scholar 

  3. Chao, H., Wang, K., He, Y., Zhang, J., Feng, J.: Gaitset: cross-view gait recognition through utilizing gait as a deep set. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  4. Chen, X., Luo, X., Weng, J., Luo, W., Li, H., Tian, Q.: Multi-view gait image generation for cross-view gait recognition. IEEE Trans. Image Process. 30, 3041–3055 (2021)

    Article  Google Scholar 

  5. Chen, X., Weng, J., Lu, W., Xu, J.: Multi-gait recognition based on attribute discovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1697–1710 (2018)

    Article  Google Scholar 

  6. Chen, X., Xu, J.: Uncooperative gait recognition: re-ranking based on sparse coding and multi-view hypergraph learning. Pattern Recogn. 53, 116–129 (2016)

    Article  Google Scholar 

  7. Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)

    Google Scholar 

  8. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  9. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 382–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_22

    Chapter  Google Scholar 

  10. Huang, T., Ben, X., Gong, C., Zhang, B., Yan, R., Wu, Q.: Enhanced spatial-temporal salience for cross-view gait recognition. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6967–6980 (2022)

    Article  Google Scholar 

  11. Huang, X., et al.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918 (2021)

    Google Scholar 

  12. Li, G., Guo, L., Zhang, R., Qian, J., Gao, S.: Transgait: multimodal-based gait recognition with set transformer. Appl. Intell. 53(2), 1535–1547 (2023)

    Article  Google Scholar 

  13. Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., Ren, M.: End-to-end model-based gait recognition. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  14. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: IEEE International Conference on Computer Vision (ICCV), pp. 14648–14656 (2021)

    Google Scholar 

  15. Lin, B., Zhang, S., Yu, X., Chu, Z., Zhang, H.: Learning effective representations from global and local features for cross-view gait recognition. arXiv preprint arXiv:2011.01461, 1(2) (2020)

  16. Liu, W., Zhang, C., Ma, H., Li, S.: Learning efficient spatial-temporal gait features with deep learning for human identification. Neuroinformatics 16(3), 457–471 (2018)

    Article  Google Scholar 

  17. Qin, H., Chen, Z., Guo, Q., Wu, Q.J., Lu, M.: RPnet: gait recognition with relationships between each body-parts. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2990–3000 (2021)

    Article  Google Scholar 

  18. Sepas-Moghaddam, A., Etemad, A.: View-invariant gait recognition with attentive recurrent learning of partial representations. IEEE Trans. Biometrics Behav. Identity Sci. 3(1), 124–137 (2020)

    Article  Google Scholar 

  19. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Geinet: view-invariant gait recognition using a convolutional neural network. In: International Conference on Biometrics (ICB) (2016)

    Google Scholar 

  20. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vision Appl. 10(1), 4 (2018)

    Article  Google Scholar 

  21. Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Gaitgraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)

    Google Scholar 

  22. Thapar, D., Nigam, A., Aggarwal, D., Agarwal, P.: VGR-net: a view invariant gait recognition network. In: 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA), pp. 1–8. IEEE (2018)

    Google Scholar 

  23. Wolf, T., Babaee, M., Rigoll, G.: Multi-view gait recognition using 3D convolutional neural networks. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4165–4169. IEEE (2016)

    Google Scholar 

  24. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)

    Article  Google Scholar 

  25. Xing, W., Li, Y., Zhang, S.: View-invariant gait recognition method by three-dimensional convolutional neural network. J. Electron. Imaging 27(1), 013010 (2018)

    Article  Google Scholar 

  26. Xu, C., Makihara, Y., Li, X., Yagi, Y., Lu, J.: Cross-view gait recognition using pairwise spatial transformer networks. IEEE Trans. Circuits Syst. Video Technol. 31(1), 260–274 (2020)

    Article  Google Scholar 

  27. Xu, Z., Lu, W., Zhang, Q., Yeung, Y., Chen, X.: Gait recognition based on capsule network. J. Vis. Commun. Image Represent. 59, 159–167 (2019)

    Article  Google Scholar 

  28. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (2006)

    Google Scholar 

  29. Zhang, K., Luo, W., Ma, L., Liu, W., Li, H.: Learning joint gait representation via quintuplet loss minimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4700–4709 (2019)

    Google Scholar 

  30. Zhang, Y., Huang, Y., Yu, S., Wang, L.: Cross-view gait recognition by discriminative feature learning. IEEE Trans. Image Process. 29, 1001–1015 (2020)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z., Tran, L., Liu, F., Liu, X.: On learning disentangled representations for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  32. Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4710–4719 (2019)

    Google Scholar 

  33. Zhu, Z., et al.: Gait recognition in the wild: a benchmark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14789–14799 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61906074, 32371984), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011276), Guangzhou Basic and Applied Basic Research Foundation (Grant No. 2023A04J1669), Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B020214003, 2023B0202090001), China Agriculture Research System (CARS-15-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Chen, X., Deng, X., Lan, Y. (2024). Gait Recognition Based on Temporal Gait Information Enhancing. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics