Skip to main content

Fusion Boundary and Gradient Enhancement Network for Camouflage Object Detection

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

  • 346 Accesses

Abstract

The problems of boundary interruption and missing internal texture feature have not been well solved in the current camouflaged object detection model, and the parameters of the model are generally large. To overcome these challenges, we propose a fusion boundary and gradient enhancement networks BGENet, which guides the context features by gradient features and boundary features together. BGENet is divided into three branches, context feature branch, boundary feature branch and gradient feature branch. Furthermore, a parallel context information enhancement module is introduced to enhance the context features. The designed pre-background information interaction module is used to highlight the boundary features of the camouflaged object and guide the context features to compensate for the boundary breaks in the context features, while we use the learned gradient features to guide the context features through the proposed gradient guidance module, and enhances internal information about context features. Experiments on CAMO, COD10K and NC4K three datasets confirm the effectiveness of our BGENet, which uses only 20.81M parameters and achieves superior performance compared with traditional and SOTA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, G., Liu, S.J., Sun, Y.J., Ji, G.P., Wu, Y.F., Zhou, T.: Camouflaged object detection via context-aware cross-level fusion. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6981–6993 (2022)

    Article  Google Scholar 

  2. Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 236–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_15

    Chapter  Google Scholar 

  3. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3560–3569 (2021)

    Google Scholar 

  4. Fan, C., Zeng, Z., Xiao, L., Qu, X.: GFNet: automatic segmentation of COVID-19 lung infection regions using CT images based on boundary features. Pattern Recogn. 132, 108963 (2022)

    Article  Google Scholar 

  5. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)

    Google Scholar 

  6. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)

  7. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6024–6042 (2021)

    Article  Google Scholar 

  8. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)

    Google Scholar 

  9. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  10. Gallego, J., Bertolino, P.: Foreground object segmentation for moving camera sequences based on foreground-background probabilistic models and prior probability maps. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 3312–3316. IEEE (2014)

    Google Scholar 

  11. Huang, Z., et al.: Feature shrinkage pyramid for camouflaged object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5557–5566 (2023)

    Google Scholar 

  12. Ji, G.P., Fan, D.P., Chou, Y.C., Dai, D., Liniger, A., Van Gool, L.: Deep gradient learning for efficient camouflaged object detection. Mach. Intell. Res. 20(1), 92–108 (2023)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)

    Article  Google Scholar 

  15. Li, A., Zhang, J., Lv, Y., Liu, B., Zhang, T., Dai, Y.: Uncertainty-aware joint salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10071–10081 (2021)

    Google Scholar 

  16. Liu, M., Di, X.: Extraordinary MHNet: military high-level camouflage object detection network and dataset. Neurocomputing. 126466 (2023)

    Google Scholar 

  17. Liu, Z., Huang, K., Tan, T.: Foreground object detection using top-down information based on EM framework. IEEE Trans. Image Process. 21(9), 4204–4217 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lv, Y., et al.: Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11591–11601 (2021)

    Google Scholar 

  19. Mao, Y., et al.: Transformer transforms salient object detection and camouflaged object detection. arXiv preprint arXiv:2104.10127 1(2), 5 (2021)

  20. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2014)

    Google Scholar 

  21. Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8772–8781 (2021)

    Google Scholar 

  22. Pan, Y., Chen, Y., Fu, Q., Zhang, P., Xu, X., et al.: Study on the camouflaged target detection method based on 3d convexity. Mod. Appl. Sci. 5(4), 152 (2011)

    Article  Google Scholar 

  23. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  24. Sengottuvelan, P., Wahi, A., Shanmugam, A.: Performance of decamouflaging through exploratory image analysis. In: 2008 First International Conference on Emerging Trends in Engineering and Technology, pp. 6–10. IEEE (2008)

    Google Scholar 

  25. Sun, Y., Wang, S., Chen, C., Xiang, T.Z.: Boundary-guided camouflaged object detection. arXiv preprint arXiv:2207.00794 (2022)

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  27. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  28. Wang, J., et al.: Multi-feature information complementary detector: a high-precision object detection model for remote sensing images. Remote Sens. 14(18), 4519 (2022)

    Article  Google Scholar 

  29. Yang, F., et al.: Uncertainty-guided transformer reasoning for camouflaged object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4146–4155 (2021)

    Google Scholar 

  30. Zheng, D., Zheng, X., Yang, L.T., Gao, Y., Zhu, C., Ruan, Y.: MFFN: multi-view feature fusion network for camouflaged object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6232–6242 (2023)

    Google Scholar 

  31. Zhu, H., et al.: I can find you! boundary-guided separated attention network for camouflaged object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3608–3616 (2022)

    Google Scholar 

  32. Zhuge, M., Lu, X., Guo, Y., Cai, Z., Chen, S.: Cubenet: x-shape connection for camouflaged object detection. Pattern Recogn. 127, 108644 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Inner Mongolia Science and Technology Project No.2021GG0166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Wu, W. (2024). Fusion Boundary and Gradient Enhancement Network for Camouflage Object Detection. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics