Skip to main content

Multimodal 3D Object Retrieval

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Abstract

Three-dimensional (3D) retrieval of objects and models plays a crucial role in many application areas, such as industrial design, medical imaging, gaming and virtual and augmented reality. Such 3D retrieval involves storing and retrieving different representations of single objects, such as images, meshes or point clouds. Early approaches considered only one such representation modality, but recently the CMCL method has been proposed, which considers multimodal representations. Multimodal retrieval, meanwhile, has recently seen significant interest in the image retrieval domain. In this paper, we explore the application of state-of-the-art multimodal image representations to 3D retrieval, in comparison to existing 3D approaches. In a detailed study over two benchmark 3D datasets, we show that the MuseHash approach from the image domain outperforms other approaches, improving recall over the CMCL approach by about 11\(\%\) for unimodal retrieval and 9\(\%\) for multimodal retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/IDSM-AI/LAH.

  2. 2.

    https://github.com/iMoonLab/MeshNet.

  3. 3.

    https://github.com/ranahanocka/MeshCNN.

  4. 4.

    https://github.com/LongLong-Jing/Cross-Modal-Center-Loss.

References

  1. Brutto, M.L., Meli, P.: Computer vision tools for 3D modelling in archaeology. HDE 1, 1–6 (2012)

    Google Scholar 

  2. Dummer, M.M., Johnson, K.L., Rothwell, S., Tatah, K., Hibbs-Brenner, M.K.: The role of VCSELs in 3D sensing and LiDAR. In: OPTO (2021)

    Google Scholar 

  3. Feng, Y., Feng, Y., You, H., Zhao, X., Gao, Y.: MeshNet: mesh neural network for 3D shape representation. In: AAAI, Honolulu, Hawaii (2019)

    Google Scholar 

  4. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: VC (1998)

    Google Scholar 

  5. Gezawa, A.S., Zhang, Y., Wang, Q., Yunqi, L.: A review on deep learning approaches for 3D data representations in retrieval and classifications. IEEE Access 8, 57566–57593 (2020)

    Article  Google Scholar 

  6. Ha, Q., Yen, L., Balaguer, C.: Robotic autonomous systems for earthmoving in military applications. Autom. Constr. 107, 102934 (2019)

    Article  Google Scholar 

  7. Han, Y.S., Lee, J., Lee, J., Lee, W., Lee, K.: 3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures. Int. J. Comput. Integr. Manuf. 32(7), 658–668 (2019)

    Article  Google Scholar 

  8. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: MeshCNN: a network with an edge. ACM Trans. Graph. (ToG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  9. Javaid, M., Haleem, A., Singh, R.P., Suman, R.: Industrial perspectives of 3D scanning: features, roles and it’s analytical applications. Sensors Int. 2, 100114 (2021)

    Article  Google Scholar 

  10. Jing, L., Vahdani, E., Tan, J., Tian, Y.: Cross-modal center loss for 3D cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3142–3151 (2021)

    Google Scholar 

  11. Klokov, R., Lempitsky, V.: Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 (2017)

    Google Scholar 

  12. Lin, D., et al.: Multi-view 3D object retrieval leveraging the aggregation of view and instance attentive features. Knowl. Based Syst. 247, 108754 (2022)

    Article  Google Scholar 

  13. Maglo, A., Lavoué, G., Dupont, F., Hudelot, C.: 3D mesh compression: survey, comparisons, and emerging trends. ACM Comput. Surv. (CSUR) 47(3), 1–41 (2015)

    Article  Google Scholar 

  14. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  15. Mohr, E., Thum, T., Bär, C.: Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models. Eur. J. Heart Fail. 24(10), 1778–1791 (2022)

    Article  Google Scholar 

  16. Pal, P., Ghosh, K.K.: Estimating digitization efforts of complex product realization processes. Int. J. Adv. Manuf. Technol. 95, 3717–3730 (2018)

    Article  Google Scholar 

  17. Pegia, M., et al.: MuseHash: supervised Bayesian hashing for multimodal image representation. In: Proceedings of the 2023 ACM International Conference on Multimedia Retrieval, pp. 434–442 (2023)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, Honolulu, HI, USA (2017)

    Google Scholar 

  19. Rahate, A., Walambe, R., Ramanna, S., Kotecha, K.: Multimodal co-learning: challenges, applications with datasets, recent advances and future directions. Inf. Fus. 81, 203–239 (2022)

    Article  Google Scholar 

  20. Selvaraju, P., et al.: BuildingNet: learning to label 3D buildings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10397–10407 (2021)

    Google Scholar 

  21. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  22. Su, J.-C., Gadelha, M., Wang, R., Maji, S.: A deeper look at 3D shape classifiers. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 645–661. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_49

    Chapter  Google Scholar 

  23. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)

    Google Scholar 

  24. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Grap. (TOG) 36(4), 1–11 (2017)

    Google Scholar 

  25. Wang, Y., Chen, Z.D., Luo, X., Li, R., Xu, X.S.: Fast cross-modal hashing with global and local similarity embedding. IEEE Trans. Cybern. 52(10), 10064–10077 (2021)

    Article  Google Scholar 

  26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (ToG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  27. Willemink, M.J., et al.: Preparing medical imaging data for machine learning. Radiology 295(1), 4–15 (2020)

    Article  Google Scholar 

  28. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  29. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  30. Xie, Y., Liu, Y., Wang, Y., Gao, L., Wang, P., Zhou, K.: Label-attended hashing for multi-label image retrieval. In: IJCAI, pp. 955–962 (2020)

    Google Scholar 

  31. Zhan, Y.W., Wang, Y., Sun, Y., Wu, X.M., Luo, X., Xu, X.S.: Discrete online cross-modal hashing. Pattern Recogn. 122, 108262 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the EU’s Horizon 2020 research and innovation programme under grant agreement H2020-101004152 XRECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pegia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pegia, M. et al. (2024). Multimodal 3D Object Retrieval. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53302-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53301-3

  • Online ISBN: 978-3-031-53302-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics