Skip to main content

Soilless Cultivation of Plants for Phytoremediation

  • Chapter
  • First Online:
Hydroponics and Environmental Bioremediation

Part of the book series: Springer Water ((SPWA))

  • 88 Accesses

Abstract

Thisi review examines the possibility of soilless cultivation systems as a means of overcoming resource scarcity in many places of the world, such as good soil and clean water. The conventional usage of arable land is becoming more difficult, especially in light of climate change. Soilless farming systems not only allow you to save water and grow plants without soil, but they also allow you to grow food in urban locations, such as residential rooftops, near to where people dine. The review compares the uses of soilless farming systems to those of conventional farming.i It examines economic viability, sustainability, and current events in this field. The review discusses three major soilless farming systems: hydroponics, aquaponics, and vertical farming. In terms of how they affect the environment, these systems are distinguished from one another and compared to conventional cultivation techniques to the maximum extent possible. In order to set the framework for future research and practical applications, the review compares published data on the yield of hydroponic cultivation systems with soil-based cultivation methods. This research provides an overview of how profitable each strategy is. The review also compares the sustainability of the most major neutral substrates used in hydroponics to highlight their environmental effects and assist future projects in selecting the appropriate substrate. The review examines the major soilless cultivation systems and discusses the difficulties and improvements to current approaches. It seeks to provide a comprehensive image of soilless farming systems so that further research may be conducted and they can be deployed in the actual world in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, P. (2002). Nutritional control in hydroponics. In D. Savvas & H. C. Passam (Eds.), Hydroponic production of vegetables and ornamentals (pp. 211–261). Embryo Publ.

    Google Scholar 

  • Anpo, M., Fukuda, H., & Wada, T. (Eds.). 2018. Plant factory using artificial light: Adapting to environmental disruption and clues to agricultural ınnovation. Elsevier.

    Google Scholar 

  • Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Scientia Horticulturae, 212, 220–234. https://doi.org/10.1016/j.scienta.2016.09.030

    Article  Google Scholar 

  • Bernstein, S. (2011). Aquaponic gardening: A step-by-step guide to raising vegetables and fish together. New Society Publishers, 3, 27–31, 117–128, 197–201.

    Google Scholar 

  • Brechner, M., & Both, A. J. (1996). Hydroponic lettuce handbook. Cornell Controlled Environment Agriculture (Cornell University). http://www.cornellcea.com/attachments/Cornell%20CEA%20Lettuce%20Handbook%20.pdf. Accessed October 9, 2017.

  • Caron, J., Price, J. S., & Rochefort, L. (2015). Physical properties of organic soil: Adapting mineral soil concepts to horticultural growing media and histosol characterization. Vadose Zone Journal, 14, 1–14. https://doi.org/10.2136/vzj2014.10.0146

    Article  Google Scholar 

  • Cole, S. (1998). The emergence of treatment wetlands. Environmental Science & Technology, 32, 218A-223A.

    Article  CAS  Google Scholar 

  • Eigenbrod, C., & Gruda, N. (2015). Urban vegetable for food security in cities: A review. Agronomy for Sustainable Development, 35, 483–498. https://doi.org/10.1007/s13593-014-0273-y

    Article  Google Scholar 

  • Galli, A., Halle, M., & Grunewald, N. (2015). Physical limits to resource access and utilisation and their economic implications in Mediterranean economies. Environmental Science and Policy, 51, 125–136.

    Google Scholar 

  • Gizas, G., & Savvas, D. (2007). Particle size and hydraulic properties of pumice affect growth and yield of greenhouse crops in soilless culture. HortScience, 42, 1274–1280.

    Article  Google Scholar 

  • Global Footprint Network. (2019). National Footprint accounts 2019 edition.

    Google Scholar 

  • Gruda, N. (2012). Current and future perspective of growing media in Europe. Acta Horticulturae, 960, 37–43. https://doi.org/10.17660/ActaHortic.2012.960.3

  • Gruda, N., Caron, J., Prasad, M., & Maher, M. J. (2016b). Growing media. In R. Lal. (Ed.), Encyclopedia of soil sciences (3rd edn., pp. 1053–1058). CRC Press, Taylor & Francis Group.https://doi.org/10.1081/E-ESS3-120053784

  • Gruda, N., Gianquinto, G., Tüzel, Y., & Savvas, D. (2016a). Culture soil-less. In R. Lal. (Ed.), Encyclopedia of soil sciences (3rd ed., pp. 533–537). CRC Press, Taylor & Francis Group. https://doi.org/10.1081/E-ESS3-120053777

  • Gruda, N., Qaryouti, M. M., & Leonardi, C. (2013). Growing media. In Good agricultural practices for greenhouse vegetable crops—Principles for mediterranean climate areas. Plant Production and Protection Paper 217 (pp. 271–302). FAO.

    Google Scholar 

  • Gruda, N., Savvas, D., Colla, G., & Rouphael, Y. (2018). Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables—A review. European Journal of Horticultural Science, 83(5), 319–328. https://doi.org/10.17660/eJHS.2018/83.5.5

  • Gruda, N., & Schnitzler, W. H. (2000). The effect of water supply on bio-morphological and plant-physiological parameters of tomato transplants cultivated in wood fiber substrate. Journal of Applied Botany, 74, 233–239.

    Google Scholar 

  • Gruda, N., Tucher, S. V., & Schnitzler, W. H. (2000). N-immobilization of wood fiber substrates in the production of tomato transplants (Lycopersicon lycopersicum (L.) Karst. ex. Farw.). Journal of Applied Botany, 74, 32–37.

    Google Scholar 

  • Grunert, O., Hernandez-Sanabria, E., Vilchez-Vargas, R., Jauregui, R., Pieper, D. H., Perneel, M., van Labeke, M.-C., Reheul, D., & Boon, N. (2016). Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Scientific Reports, 6, 1–14. https://doi.org/10.1038/srep18837

    Article  CAS  Google Scholar 

  • Heller, H., Bar-Tal, A., Assouline, S., Narkis, K., Suryano, S., de la Forge, A., Barak, M., Alon, H., Bruner, M., Cohen, S., & Tsohar, D. (2015). The effects of container geometry on water and heat regimes in soilless culture: Lettuce as case study. Irrigation Science, 33, 53–65. https://doi.org/10.1007/s00271-014-0448-y

  • Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., & Billen, G. (2011). Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1), 18–26.

    Article  Google Scholar 

  • Hultberg, M., Holmkvist, A., & Alsanius, B. (2011). Strategies for administration of biosurfactant-producing pseudomonads for biocontrol in closed hydroponic systems. Crop Protection, 30, 995–999. https://doi.org/10.1016/j.cropro.2011.04.012

    Article  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. CRC Press.

    Google Scholar 

  • Katsoulas, N., Savvas, D., Bartzanas, T., & Kittas, C. (2015). Model-based control of water and nutrient discharge in a tomato crop grown in a semi-closed soilless system as influenced by the drainage fraction. Computers and Electronics in Agriculture, 113, 61–71 https://doi.org/10.1016/j.compag.2015.01.014

  • Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., & Sudduth, K. A. (2013). Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture, 93, 46–54. https://doi.org/10.1016/j.compag.2013.01.011

  • Lin, D., Wambersie, L., Wackernagel, M., & Hanscom, P. (Eds.) (2020). Global footprint network. In Calculating earth overshoot day 2020: Estimates point to august 22nd. Global Footprint Network.

    Google Scholar 

  • Maher, M. J., & Thomson, D. (1991). Growth and Mn content of tomato (Lycopersicon esculentum) seedlings grown in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark substrate. Scientia Horticulturae, 48, 223–231. https://doi.org/10.1016/0304-4238(91)90130-Q

    Article  Google Scholar 

  • Martínez-Blanco, J., Lazcano, C., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., Antón, A., & Boldrin, A. (2013). Compost benefits for agriculture evaluated by life cycle assessment: A review. Agronomy for Sustainable Development, 33, 721–732. https://doi.org/10.1007/s13593-013-0148-7

    Article  Google Scholar 

  • Morard, P. (1997). Possible use of ion selective electrodes for nutrient solutions in recirculated systems. In Proceedings of the 9th ınternational congress soilless culture, Jersey, 1996 (pp. 291–298). ISOSC.

    Google Scholar 

  • Narayanan, M., Davis, L. C., & Erickson, L. E. (1995). Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants. Environmental Science and Technology, 29, 2437–2444.

    Article  CAS  Google Scholar 

  • Nemati, M. R., Simard, F., Fortin, J.-P., & Beaudoin, J. (2014). Potential use of biochar in growing media. Vadose Zone Journal, 14, 1–8.

    Article  Google Scholar 

  • Ortega, M. C., Moreno, M. T., Ordovas, J., & Aguado, M. T. (1996). Behavior of different horticultural species in phytotoxicity bioassays of bark substrates. Scientia Horticulturae, 66, 125–132. https://doi.org/10.1016/0304-4238(96)00900-4

  • Pagliaccia, D., Ferrin, D., & Stanghellini, M. E. (2007). Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems. Plant and Soil, 299, 163–179. https://doi.org/10.1007/s11104-007-9373-7

  • Paradiso, R., Buonomo, R., Dixon, M. A., Barbieri, G., & De Pascale, S. (2014). Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source. Advances in Space Research, 53, 574–584. https://doi.org/10.1016/j.asr.2013.11.024

    Article  CAS  Google Scholar 

  • Peters, G. P., Marland, G., Le Quéré, C., Boden, T., & Canadell, J. G. (2012). Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Climate Change, 2, 2–4.

    Google Scholar 

  • Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2005). Biology of plants (pp. 115–137, 628–638, 646, 667–685, 785–792). Macmillan.

    Google Scholar 

  • Raviv, M., Wallach, R., & Blom, T. J. (2004). The effect of physical properties of soilless media on plant performance—A review. Acta Horticulturae, 644, 251–259. https://doi.org/10.17660/ActaHortic.2004.644.34.

  • Rius-Ruiz, X. F., Andrade, F. J., Riu, J., & Rius, X. F. (2014). Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chemistry, 147, 92–97. https://doi.org/10.1016/j.foodchem.2013.09.114

  • Sabli, M. Z. (2012). Fertigation of Bell Pepper (Capsicum annuum L.) in a soil-less greenhouse system: Effects of fertiliser formulation and irrigation frequency (Doctoral dissertation, University of Newcastle upon Tyne).

    Google Scholar 

  • Sadava, D. E., Heller, H. C., Purves, W. K., Orians, G. H., & Hillis, D. M. (2014). Life: The science of biology (pp. 186–202). MacMillan.

    Google Scholar 

  • Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture and Environment, 1(2), 176–183.

    CAS  Google Scholar 

  • Sardare, M. D., & Adame, S. V. (2013). A review on plant without soil-hydroponics. International Journal of Research in Engineering and Technology, 2, 299–304.

    Google Scholar 

  • Savvas, D. (2002). Nutrient solution recycling. In D. Savvas & H. C. Passam (Eds.), Hydroponic production of vegetables and ornamentals (pp. 299–343). Embryo Publ.

    Google Scholar 

  • Savvas, D. (2003). Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. Journal of Food, Agriculture Environment, 1, 80–86.

    Google Scholar 

  • Savvas, D. (2009). Modern developments in the use of inorganic media in greenhouse vegetable and flower production. Acta Horticulturae, 819, 73–86. https://doi.org/10.17660/ActaHortic.2009.819.7

  • Savvas, D., & Adamidis, K. (1999). Automated management of nutrient solutions based on target electrical conductivity, pH, and nutrient concentration ratios. Journal of Plant Nutrition, 22, 1415–1432. https://doi.org/10.1080/01904169909365723

  • Savvas, D., Gianquinto, G. P., Tüzel, Y., & Gruda, N. (2013). Soilless culture. In Good agricultural practices for greenhouse vegetable crops—Principles for mediterranean climate areas. Plant Production and Protection Paper 217 (pp. 303–354). FAO.

    Google Scholar 

  • Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry—A review. European Journal of Horticultural Science, 83, 280–293. https://doi.org/10.17660/eJHS.2018/83.5.2

    Article  Google Scholar 

  • Schmilewski, G. (2009). Growing medium constituents used in the EU. Acta Horticulturae, 819, 33–46. https://doi.org/10.17660/ActaHortic.2009.819.3

  • Schnoor, J. L., Light, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreia, L. H. (1995). Phytoremediation of organic and nutrients. Environmental Science and Technology, 27(7), 8–9. https://doi.org/10.1021/es00007a747

    Article  Google Scholar 

  • Shrestha, A., & Dunn, B. (2010). Hydroponics. Oklahoma Cooperative Extension Service.

    Google Scholar 

  • Sonneveld, C., & Voogt, W. (2009). Plant nutrition of greenhouse crops. Springer, 431 pp.

    Google Scholar 

  • Steiner, C., & Harttung, T. (2014). Biochar as growing media additive and peat substitute. Solid Earth, 5, 995–999. https://doi.org/10.5194/se-5-995-2014

  • Tyson, R. V., Treadwel, D. D., & Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponic systems. HortTechnology, 21, 1–13. https://doi.org/10.21273/HORTTECH.21.1.6

    Article  Google Scholar 

  • Van Os, E., Gieling, T. H., & Lieth, H. H. (2008). Technical equipment in soilless production systems. In M. Raviv, & J. H. Lieth (Eds.), Soilless culture theory and practice (pp. 147–207). Elsevier Publications. https://doi.org/10.1016/B978-044452975-6.50007-1

  • Van Os, E. A., Gieling, T. H., & Ruijs, M. N. A. (2002). Equipment for hydroponic installations. In D. Savvas & H. C. Passam (Eds.), Hydroponic production of vegetables and ornamentals (pp. 103–141). Embryo Publ.

    Google Scholar 

  • Wohanka, W. (2002). Nutrient solution disinfection. In D. Savvas & H. C. Passam (Eds.), Hydroponic production of vegetables and ornamentals (pp. 345–372). Embryo Publ.

    Google Scholar 

  • Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83, 268–275.

    Google Scholar 

Download references

Acknowledgements

I wish to express my deepest gratitude to my supervisors, Professor Dr Gunjan and Dr Saurabh, who guided and encouraged me towards being more professional. Without their persistent guidance and support, the completion of this work would not have been possible. I would like to acknowledge the support and great love of my family. This work would not have been possible without their grateful and understanding input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Mukherjee, G., Gupta, S. (2024). Soilless Cultivation of Plants for Phytoremediation. In: Kumar, N. (eds) Hydroponics and Environmental Bioremediation. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-53258-0_11

Download citation

Publish with us

Policies and ethics