Skip to main content

Abstract

Segmentation of the Aortic Vessel Tree (AVT) in the Computed Tomography Angiography (CTA) images is pivotal for the diagnosis and monitoring of the aortic diseases. Identifying changes in the AVT structure requires high-quality reconstructions that can enable the accurate comparison of the AVT geometry between follow-up scans. However, manual delineation of the whole AVT is a very time-consuming and labor-intensive procedure that can stall the clinical workflow. In this paper, a Convolutional Neural Network (CNN) methodology is implemented based on the SegResNet architecture for the automatic segmentation of the AVT. A training scheme including preprocessing and data augmentation is designed for the memory-efficient and effective learning of the model parameters. Furthermore, reconstructed surfaces from the initially extracted segmentations are produced through the Marching cubes algorithm and surface correction techniques. The proposed methodology is evaluated in the public SEG.A. grand challenge dataset where in a 5-fold cross-validation experiment it achieved DSC coefficient 91.70%, Recall 91.70%, Precision 91.90% and Hausdorff distance 5.17 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PyMeshFix: https://pymeshfix.pyvista.org/.

References

  1. Abdolmanafi, A., Forneris, A., Moore, R.D., Martino, E.S.D.: Deep-learning method for fully automatic segmentation of the abdominal aortic aneurysm from computed tomography imaging. Front. Cardiovasc. Med. 9, 1040053 (2023). https://doi.org/10.3389/FCVM.2022.1040053

  2. Attene, M.: A lightweight approach to repairing digitized polygon meshes. Vis. Comput. 26, 1393–1406 (2010). https://doi.org/10.1007/S00371-010-0416-3

  3. Bencevic, M., Habijan, M., Galic, I., Babin, D.: Using the polar transform for efficient deep learning-based aorta segmentation in CTA images. Proc. Elmar - Int. Symp. Electron. Mar. 191–194 (2022). https://doi.org/10.1109/ELMAR55880.2022.9899786

  4. Biesdorf, A., et al.: Segmentation and quantification of the aortic arch using joint 3d model-based segmentation and elastic image registration. Med. Image Anal. 16, 1187–1201 (2012). https://doi.org/10.1016/J.MEDIA.2012.05.010

  5. Bonechi, S., et al.: Segmentation of aorta 3d CT images based on 2d convolutional neural networks. Electronics 10(20), 2559 (2021). https://doi.org/10.3390/ELECTRONICS10202559

  6. Cao, L., et al.: Fully automatic segmentation of type b aortic dissection from CTA images enabled by deep learning. Eur. J. Radiol. 121, 108713 (2019). https://doi.org/10.1016/J.EJRAD.2019.108713

  7. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare, November 2022. https://arxiv.org/abs/2211.02701v1

  8. Dawson-Haggerty et al.: trimesh https://trimsh.org/

  9. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 317–324, July 1999. https://doi.org/10.1145/311535.311576

  10. Fantazzini, A., et al.: 3d automatic segmentation of aortic computed tomography angiography combining multi-view 2d convolutional neural networks. Cardiovasc. Eng. Technol. 11, 576 (2020). https://doi.org/10.1007/S13239-020-00481-Z

  11. Hatamizadeh, A., et al.: UNETR: transformers for 3d medical image segmentation. In: Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, pp. 1748–1758 (2022). https://doi.org/10.1109/WACV51458.2022.00181

  12. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2020, October 2020. https://doi.org/10.1109/CIBCB48159.2020.9277638

  13. Jin, Y., Pepe, A., Li, J., Gsaxner, C., Egger, J.: Deep learning and particle filter-based aortic dissection vessel tree segmentation 11600, 460–465 (2021) https://doi.org/10.1117/12.2588220

  14. Li, Z., et al.: Lumen segmentation of aortic dissection with cascaded convolutional network. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 122–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_14

    Chapter  Google Scholar 

  15. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987). https://doi.org/10.1145/37402.37422

  16. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  17. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas, April 2018. https://arxiv.org/abs/1804.03999v3

  18. Pepe, A., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal. 65, 101773 (2020). https://doi.org/10.1016/J.MEDIA.2020.101773

  19. Peyrin, F., Engelke, K.: CT Imaging: basics and new trends. In: Grupen, C., Buvat, I. (eds.) Handbook of Particle Detection and Imaging, pp. 883–915. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-13271-1_36

  20. Radl, L., et al.: AVT: multicenter aortic vessel tree CTA dataset collection with ground truth segmentation masks. Data Brief 40, 107801 (2022). https://doi.org/10.1016/J.DIB.2022.107801

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shams, M., Salem, M.A., Hamad, S., Shedeed, H.A.: Coronary artery tree segmentation in computed tomography angiography using otsu method. In: 2017 IEEE 8th International Conference on Intelligent Computing and Information Systems, ICICIS 2017, 2018-January, pp. 416–420, July 2017. https://doi.org/10.1109/INTELCIS.2017.8260081

  23. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 1–28 (2015). https://doi.org/10.1186/S12880-015-0068-X

  24. Tahoces, P.G., et al.: Automatic detection of anatomical landmarks of the aorta in CTA images. Med. Biol. Eng. Comput. 58, 903–919 (2020). https://doi.org/10.1007/S11517-019-02110-X

  25. Vollmer, J., Mencl, R., Uller, H.M., Dieser, Z.: Improved laplacian smoothing of noisy surface meshes improved laplacian smoothing of noisy surface meshes (1999)

    Google Scholar 

  26. Bozkir, Ö.F., Budak, A., Karatas, H., Ceylan, M.: Segmentation of the aorta in CTA images using deep learning methods, February 2023. https://doi.org/10.21203/RS.3.RS-2559681/V1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Panagiotis Vagenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vagenas, T.P., Georgas, K., Matsopoulos, G.K. (2024). Deep Learning-Based Segmentation and Mesh Reconstruction of the Aortic Vessel Tree from CTA Images. In: Pepe, A., Melito, G.M., Egger, J. (eds) Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition. SEGA 2023. Lecture Notes in Computer Science, vol 14539. Springer, Cham. https://doi.org/10.1007/978-3-031-53241-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53241-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53240-5

  • Online ISBN: 978-3-031-53241-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics