Skip to main content

Learning Burnside Homomorphisms with Rounding and Pseudorandom Function

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2023)

Abstract

The use of pseudorandom function (PRF) and weak PRF as foundational primitives is common in a variety of cryptographic applications, including encryption, authentication, and identification. In this paper, we present a new PRF construction derived from a weak PRF family. Specifically, we propose a derandomization technique from a post-quantum hardness assumption known as learning Burnside homomorphisms with noise (\(B_n\)-LHN). Through the derandomization, a new hardness assumption arises, which we refer to as learning Burnside homomorphisms with rounding (\(B_n\)-LHR). We establish the security of the derandomization by demonstrating that the \(B_n\)-LHR problem is at least as hard as the \(B_n\)-LHN problem.

In the work by Naor and Reingold (NR), a PRF construction is introduced based on a weak PRF family, utilizing a novel cryptographic primitive called a pseudorandom synthesizer (PRS). However, this approach necessitates an excessively large key size to design a PRF family. To overcome this issue and produce a more efficient PRF construction, we design a length-doubling pseudorandom generator (PRG) from a weak PRF. Here, the PRG is defined using the secret-key components of a PRF. Notably, in our PRF construction, the length-doubling PRG exhibits efficiency primarily when employed as an intermediate function. We also provide insight into the \(B_n\)-LHR problem by discussing the details of the concatenation operation and error distribution in the Burnside group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adian, S.I.: Problema Bernsaida i tozhdestva v gruppakh. Nauka (1975)

    Google Scholar 

  2. Adian, S.I.: The burnside problem and related topics. Russ. Math. Surv. 65(5), 805 (2010)

    Article  Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems extended abstract. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  5. Baumslag, G., Fazio, N., Nicolosi, A.R., Shpilrain, V., Skeith, W.E.: Generalized learning problems and applications to non-commutative cryptography. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 324–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24316-5_23

    Chapter  Google Scholar 

  6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

    Article  MathSciNet  Google Scholar 

  7. Bogdanov, A., Rosen, A.: Pseudorandom functions: three decades later. In: Tutorials on the Foundations of Cryptography. ISC, pp. 79–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_3

    Chapter  Google Scholar 

  8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, pp. 575–584 (2013)

    Google Scholar 

  9. Burnside, W.: On an unsettled question in the theory of discontinuous groups. Quart. J. Pure Appl. Math. 33, 230–238 (1902)

    Google Scholar 

  10. Burnside, W.: The Collected Papers of William Burnside: Commentary on Burnside’s Life and Work; Papers 1883–1899, vol. 1. Oxford University Press (2004)

    Google Scholar 

  11. Fazio, N., Iga, K., Nicolosi, A.R., Perret, L., Skeith, W.E.: Hardness of learning problems over burnside groups of exponent 3. Des. Codes Crypt. 75(1), 59–70 (2015)

    Article  MathSciNet  Google Scholar 

  12. Goldreich, O.: A primer on Pseudorandom Generators, vol. 55. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  14. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 28(2), 261–272 (1964)

    MathSciNet  Google Scholar 

  15. Gupta, N.: On groups in which every element has finite order. Am. Math. Mon. 96(4), 297–308 (1989)

    Article  MathSciNet  Google Scholar 

  16. Hall, M.: Solution of the burnside problem for exponent 6. Proc. Natl. Acad. Sci. U.S.A. 43(8), 751–753 (1957)

    Article  MathSciNet  Google Scholar 

  17. Hall, M.: The Theory of Groups. Macmillan Company, New York (1959)

    Google Scholar 

  18. HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://doi.org/10.1137/S0097539793244708

  19. Ivanov, S.V.: The free burnside groups of sufficiently large exponents. Int. J. Algebra Comput. 4, 1–308 (1994)

    Article  MathSciNet  Google Scholar 

  20. Joan, D., Vincent, R.: The design of Rijndael: AES-the advanced encryption standard. Information Security and Cryptography (2002)

    Google Scholar 

  21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC Cryptography and Network Security Series, CRC Press (2020). https://books.google.com/books?id=RsoOEAAAQBAJ

  22. Levi, F., van der Waerden, B.L.: Über eine besondere klasse von gruppen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9, 154–158 (1933)

    Google Scholar 

  23. Levin, L.A.: The tale of one-way functions. Probl. Inf. Transm. 39(1), 92–103 (2003)

    Article  MathSciNet  Google Scholar 

  24. Luby, M.: Pseudorandomness and Cryptographic Applications, vol. 1. Princeton University Press, Princeton (1996)

    Google Scholar 

  25. Micciancio, D., Regev, O.: Lattice-based cryptography. Post-quantum Cryptography, pp. 147–191 (2009)

    Google Scholar 

  26. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

    Article  MathSciNet  Google Scholar 

  27. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM (JACM) 51(2), 231–262 (2004)

    Article  MathSciNet  Google Scholar 

  28. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6), 899–942 (2004)

    Article  MathSciNet  Google Scholar 

  29. Mihailescu, M.I., Nita, S.L.: Lattice-based cryptography. In: Pro Cryptography and Cryptanalysis, pp. 291–300. Apress, Berkeley, CA (2021). https://doi.org/10.1007/978-1-4842-6367-9_11

    Chapter  Google Scholar 

  30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 1–40 (2009)

    Article  MathSciNet  Google Scholar 

  31. Regev, O.: The learning with errors problem. Invited Survey CCC 7(30), 11 (2010)

    Google Scholar 

  32. Regev, O.: The learning with errors problem (invited survey). In: 2010 IEEE 25th Annual Conference on Computational Complexity, pp. 191–204. IEEE (2010)

    Google Scholar 

  33. Robinson, D.J.: A Course in the Theory of Groups, vol. 80. Springer, New York (2012)

    Google Scholar 

  34. Shanov, I.: Solution of the Burnside’s problem for exponent 4. Leningrad State Univ. Ann. (Uchenye Zapiski) Mat. Ser. 10, 166–170 (1940)

    Google Scholar 

  35. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. cryptology eprint archive (2004)

    Google Scholar 

  36. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, New York (2005)

    Book  Google Scholar 

Download references

Acknowledgements

We sincerely thank the reviewers for their valuable and insightful feedback on the initial draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, D.K., Nicolosi, A.R. (2024). Learning Burnside Homomorphisms with Rounding and Pseudorandom Function. In: Manulis, M., Maimuţ, D., Teşeleanu, G. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2023. Lecture Notes in Computer Science, vol 14534. Springer, Cham. https://doi.org/10.1007/978-3-031-52947-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52947-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52946-7

  • Online ISBN: 978-3-031-52947-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics