Skip to main content

FM-Net: A Fully Automatic Deep Learning Pipeline for Epicardial Adipose Tissue Segmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Epicardial adipose tissue (EAT) has been recognized as a risk factor and independent predictor for cardiovascular diseases (CVDs), due to its intimate relationship with the myocardium and coronary arteries. Dixon MRI is widely used to depict adipose tissue by deriving fat and water signals. The purpose of this study was to automatically segment and quantify EAT from Dixon MRI data using a fully automated deep learning pipeline based on fat maps (FM-Net). Data used in this study was from a sub-study (HEALTH) of the Swedish CArdioPulmonarybiolmage Study (SCAPIS), with 6504 Dixon MRI 2D images from 90 participants (45 each for type 2 diabetes and controls). FM-Net was comprised of a double Res-UNet CNN architecture, designed to compensate for the severe class imbalance and complex geometry of EAT. The first network accurately detected the region of interest (ROI) containing fat, and the second network performed targeted regional segmentation of the ROI. Performance of fat segmentation was improved by using fat maps as input of FM-Net, to enhance fat features by combining out-of-phase, water, and fat phase images. Performance was evaluated using dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95). Overall, FM-Net obtained a promising DSC of 86.3%, and a low HD95 of 3.11 mm, outperforming existing state-of-the-art methods. The proposed method enables automatic and accurate quantification of EAT from Dixon MRI data, which could enhance the understanding of the role of EAT in CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iacobellis, G., Corradi, D., Sharma, A.M.: Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Rev. Cardiol. 2, 536–543 (2005)

    Article  Google Scholar 

  2. Sacks, H.S., Fain, J.N.: Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917 (2007)

    Article  Google Scholar 

  3. Patel, K.H.K., Hwang, T., Se Liebers, C., Ng, F.S.: Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am. J. Physiol.-Heart Circulatory Physiol. 322, H129–H144 (2022)

    Google Scholar 

  4. Auer, J.: Fat: an emerging player in the field of atrial fibrillation. Eur. Heart J. 38, 62–65 (2017)

    Article  Google Scholar 

  5. Iacobellis, G.: Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19, 593–606 (2022)

    Article  Google Scholar 

  6. Karampetsou, N., Alexopoulos, L., Minia, A., Pliaka, V., et al.: Epicardial adipose tissue as an independent cardiometabolic risk factor for coronary artery disease. Cureus (2022)

    Google Scholar 

  7. Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., Mazurek, T.: Role of epicardial adipose tissue in cardiovascular diseases: a review. Biology 11, 355 (2022)

    Article  Google Scholar 

  8. Hatem, S.N., Sanders, P.: Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 102, 205–213 (2014)

    Article  Google Scholar 

  9. Bertaso, A.G., Bertol, D., Duncan, B.B., et al.: Epicardial fat: definition, measurements and systematic review of main outcomes. Arquivos Brasileiros de Cardiologia (2013)

    Google Scholar 

  10. Xiong, Z., Fedorov, V.V., Fu, X., et al.: Fully automatic left atrium segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully convolutional neural network. IEEE Trans. Med. Imaging 38, 515–524 (2019)

    Article  Google Scholar 

  11. Xiong, Z., Xia, Q., Hu, Z., Huang, N.,et al.: A global benchmark of algorithms for segmenting late gadolinium-enhanced cardiac magnetic resonance imaging. 26 (2021)

    Google Scholar 

  12. Commandeur, F., Goeller, M., Betancur, J., et al.: Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans. Med. Imaging 37, 1835–1846 (2018). https://doi.org/10.1109/TMI.2018.2804799

    Article  Google Scholar 

  13. Commandeur, F., Goeller, M., Razipour, A., et al.: Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol. Artif. Intell. 1, e190045 (2019). https://doi.org/10.1148/ryai.2019190045

  14. Santini, G., Latta, D.D., Vatti, A., et al.: Deep learning for pericardial fat extraction and evaluation on a population study. Radiol. Imaging (2020)

    Google Scholar 

  15. Li, X., Sun, Y., Xu, L., et al.: Automatic quantification of epicardial adipose tissue volume. Med. Phys. 48, 4279–4290 (2021)

    Article  Google Scholar 

  16. Zhang, Q., Zhou, J., Zhang, B., et al.: Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access 8, 128032–128041 (2020)

    Article  Google Scholar 

  17. He, X., Guo, B.J., Lei, Y., et al.: Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography. Phys. Med. Biol. 65, 095012 (2020)

    Article  Google Scholar 

  18. Daudé, P., Ancel, P., Confort Gouny, S., et al.: Deep-learning segmentation of epicardial adipose tissue using four-chamber cardiac magnetic resonance imaging. Diagnostics 12, 126 (2022)

    Article  Google Scholar 

  19. Bard, A., Raisi-Estabragh, Z., Ardissino, M., et al.: Automated quality-controlled cardiovascular magnetic resonance pericardial fat quantification using a convolutional neural network in the UK biobank. Front. Cardiovasc. Med. 8, 677574 (2021)

    Article  Google Scholar 

  20. Homsi, R., Meier-Schroers, M., Gieseke, J., et al.: 3D-Dixon MRI based volumetry of peri- and epicardial fat. Int. J. Cardiovasc. Imaging 32, 291–299 (2016)

    Article  Google Scholar 

  21. Homsi, R., Sprinkart, A.M., Gieseke, J., et al.: 3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction. Eur. J. Radiol. 85, 936–942 (2016)

    Article  Google Scholar 

  22. Langner, T., Hedström, A., Mörwald, K., et al.: Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water–fat MRI. Magn. Reson. Med. 81, 2736–2745 (2019)

    Article  Google Scholar 

  23. Edin, C., Ekstedt, M., Scheffel, T., et al.: Ectopic fat is associated with cardiac remodeling—a comprehensive assessment of regional fat depots in type 2 diabetes using multi-parametric MRI. Front. Cardiovasc. Med. 9, 813427 (2022)

    Article  Google Scholar 

  24. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, pp. 565–571. IEEE (2016)

    Google Scholar 

  25. Henningsson, M., Brundin, M., Scheffel, T., et al.: Quantification of epicardial fat using 3D cine Dixon MRI. BMC Med. Imaging 20, 80 (2020)

    Article  Google Scholar 

  26. Cardoso, M.J., Li, W., Brown, R., et al.: MONAI: an open-source framework for deep learning in healthcare. http://arxiv.org/abs/2211.02701 (2022)

  27. Yang, Z., Farsiu, S.: Directional connectivity-based segmentation of medical images (2023)

    Google Scholar 

  28. Cai, H., Li, S., Qi, L., et al.: Orthogonal annotation benefits barely-supervised medical image segmentation. http://arxiv.org/abs/2303.13090 (2023)

  29. Alom, Z., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. 12 (2018)

    Google Scholar 

  30. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. http://arxiv.org/abs/1807.10165 (2018)

  31. Xia, Q., Yao, Y., Hu, Z., Hao, A.: Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks. In: Pop, M., Sermesant, M., Zhao, J., Li, S., McLeod, K., Young, A., Rhode, K., Mansi, T. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 211–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, F. et al. (2024). FM-Net: A Fully Automatic Deep Learning Pipeline for Epicardial Adipose Tissue Segmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics