Skip to main content

Impact of Catheter Orientation on Cardiac Radiofrequency Ablation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Radiofrequency ablation is a typical treatment for severe cases of cardiac arrhythmias. A catheter, inserted from the patient’s groin, delivers current at frequencies of 450–500 kHz to the arrhythmogenic area, inflicting thermal damage. The electrical current delivered to the tissue depends (among others) on the tip shape and the catheter orientation. A modified Penne’s bioheat equation with an electric source and cooling blood convection is the standard choice for RFA models. The incompressible Navier-Stokes equation describes the interaction of the blood flow and the irrigated saline. The cardiac tissue is a nonlinear orthotropic hyperelastic material and the Hertz-Signorini-Moreau contact boundary conditions model the frictionless interaction of the electrode with the cardiac tissue. In this work, we consider a spherical electrode tip shape and different orientation angles (from perpendicular up to 60\(^{\circ }\) from the vertical position). We perform a virtual ablation for a standard protocol of power 30 W for a duration of 30 s on a simulated porcine cardiac slab. We compare the contact surface of the electrode with the tissue for the different orientations and the characteristics of the generated lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augustin, C.M., et al.: A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Comput. Methods Appl. Mech. Eng. 386, 114092 (2021). https://doi.org/10.1016/j.cma.2021.114092

    Article  Google Scholar 

  2. Bianchi, L., Bontempi, M., De Simone, S., Franceschet, M., Saccomandi, P.: Temperature dependence of thermal properties of Ex vivo porcine heart and lung in hyperthermia and ablative temperature ranges. Ann. Biomed. Eng. 51(6), 1181–1198 (2023). https://doi.org/10.1007/s10439-022-03122-9

    Article  Google Scholar 

  3. Gallagher, N., Fear, E.C., Byrd, I.A., Vigmond, E.J.: Contact geometry affects lesion formation in radio-frequency cardiac catheter ablation. PLoS ONE 8, e73242 (2013). https://doi.org/10.1371/journal.pone.0073242

    Article  Google Scholar 

  4. Guerra, J.M., et al.: Effects of open-irrigated radiofrequency ablation catheter design on lesion formation and complications: in vitro comparison of 6 different devices. J. Cardiovasc. Electrophysiol. 24(10), 1157–1162 (2013). https://doi.org/10.1111/jce.12175

    Article  Google Scholar 

  5. Jaspard, F., Nadi, M.: Dielectric properties of blood: an investigation of temperature dependence. Physiol. Meas. 23(3), 547 (2002). https://doi.org/10.1088/0967-3334/23/3/306

    Article  Google Scholar 

  6. Masnok, K., Watanabe, N.: Catheter contact area strongly correlates with lesion area in radiofrequency cardiac ablation: an ex vivo porcine heart study. J. Interv. Card. Electrophysiol. 63, 561–572 (2021). https://doi.org/10.1007/s10840-021-01054-3

    Article  Google Scholar 

  7. O’Neill, D.P., et al.: A three-state mathematical model of hyperthermic cell death. Ann. Biomed. Eng. 39, 570–579 (2011). https://doi.org/10.1007/s10439-010-0177-1

    Article  Google Scholar 

  8. Petras, A., Leoni, M., Guerra, J., Jansson, J., Gerardo-Giorda, L.: Effect of tissue elasticity in cardiac radiofrequency catheter ablation models. In: 2018 Computing in Cardiology Conference (CinC), pp. 3–6 (2018). https://doi.org/10.22489/CinC.2018.035

  9. Petras, A., Leoni, M., Guerra, J.M., Gerardo-Giorda, L.: Calibration of a three-state cell death model for cardiomyocytes and its application in radiofrequency ablation. Physiol. Meas. 44(6), 065003 (2023). https://doi.org/10.1088/1361-6579/acdcdd

    Article  Google Scholar 

  10. Petras, A., Leoni, M., Guerra, J.M., Jansson, J., Gerardo-Giorda, L.: A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue. Int. J. Numer. Methods Biomed. Eng. 35, e3232 (2019). https://doi.org/10.1002/cnm.3232

    Article  Google Scholar 

  11. Petras, A., Weidmann, Z.M., Ferrero, M.E., Leoni, M., Guerra, J.M., Gerardo-Giorda, L.: Impact of electrode tip shape on catheter performance in cardiac radiofrequency ablation. Heart Rhythm O2 3(6), 699–705 (2022). https://doi.org/10.1016/j.hroo.2022.07.014

    Article  Google Scholar 

  12. Pérez, J.J., D’Angelo, R., González-Suárez, A., Nakagawa, H., Berjano, E., d’Avila, A.: Low-energy (360 J) radiofrequency catheter ablation using moderate power - short duration: proof of concept based on in silico modeling. J. Interv. Card. Electrophysiol. 66, 1085–1093 (2022). https://doi.org/10.1007/s10840-022-01292-z

    Article  Google Scholar 

  13. Rosentrater, K.A., Flores, R.A.: Physical and rheological properties of slaughterhouse swine blood and blood components. Trans. ASAE 40(3), 683–689 (1997). https://doi.org/10.13031/2013.21287

  14. Squara, F., et al.: In vitro evaluation of ice-cold saline irrigation during catheter radiofrequency ablation. J. Cardiovasc. Electrophysiol. 25, 1125–1132 (2014). https://doi.org/10.1111/jce.12479

    Article  Google Scholar 

  15. Usyk, T.P., Mazhari, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61, 143–164 (2000). https://doi.org/10.1023/A:1010883920374

    Article  Google Scholar 

  16. Wen, J., Wan, N., Bao, H., Li, J.: Quantitative measurement and evaluation of red blood cell aggregation in normal blood based on a modified Hanai equation. Sensors 19(5), 1095 (2019). https://doi.org/10.3390/s19051095

    Article  Google Scholar 

  17. Wittkampf, F.H., Nakagawa, H.: RF catheter ablation: lessons on lesions. Pacing Clin. Electrophysiol. 29, 1285–1297 (2006). https://doi.org/10.1111/j.1540-8159.2006.00533.x

    Article  Google Scholar 

  18. Yastrebov, V.A.: Numerical Methods in Contact Mechanics. Wiley (2013). https://doi.org/10.1002/9781118647974

Download references

Acknowledgements

This work has been partially supported by the State of Upper Austria. This research was funded in part by the Austrian Science Fund (FWF) P35374N. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argyrios Petras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leoni, M., Petras, A., Weidmann, Z.M., Guerra, J.M., Gerardo-Giorda, L. (2024). Impact of Catheter Orientation on Cardiac Radiofrequency Ablation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics