Skip to main content

Gene’s Association with Coronary Stent Stenosis After Drug Eluting Stent: Review

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023) (AI2SD 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 905))

  • 39 Accesses

Abstract

Drug-eluting stents are frequently employed in cardiovascular coronary revascularization procedures, primarily because of their capacity to limit intimal hyperplasia. Stent stenosis has the potential to manifest within the artery that has been treated, which can ultimately result in procedural failure. One potential factor that may contribute to this failure is the genetic composition of the patients. The aim of this study is to investigate the correlation between genetic diversity, as reported in existing literature, and the incidence of coronary revascularization subsequent to angioplasty and the use of drug-eluting stents. Consequently, the involvement of various genetic systems, including antioxidant genes, the inflammatory system, the renin angiotensin system, the anticoagulant system, and the homeostasis system, is assessed in the context of stent restenosis. In conclusion, the utilization of genetic diagnosis for the NOS3, AGT, ACE, and CYP2C19 genes holds promise in improving treatment outcomes through the implementation of personalized interventions to tackle coronary stent restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buccheri, D., Piraino, D., Andolina, G., Cortese, B.: Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J. Thoracic Disease 8(10), E1150–E1162 (2016). https://doi.org/10.21037/jtd.2016.10.93

    Article  Google Scholar 

  2. Virmani, R., Kolodgie, F.D., Finn, A.V., Gold, H.K.: Pathological Anatomy of Restenosis. In: Duckers, H.J., Nabel, E.G., Serruys, P.W. (eds.) Essentials of Restenosis, pp. 47–58. Humana Press, Totowa, NJ (2007). https://doi.org/10.1007/978-1-59745-001-0_4

    Chapter  Google Scholar 

  3. Farooq, V., Gogas, B.D., Serruys, P.W.: Restenosis. Circ. Cardiovasc. Interv. 4(2), 195–205 (2011).https://doi.org/10.1161/CIRCINTERVENTIONS.110.959882

  4. Omeh, D.J., Restenosis, E.S.: StatPearls Publishing (2020). Consulté le: 13 août 2021. [En ligne]. Disponible sur: https://www.ncbi.nlm.nih.gov/books/NBK545139/

  5. Geary, R.L., Koudy Williams, J., Golden, D., Brown, D.G., Benjamin, M.E., Adams, M.R.: Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis: a nonhuman primate model of restenosis. Arteriosclerosis, Thrombosis, Vascular Biol. 16(1), 34–43 (1996). https://doi.org/10.1161/01.ATV.16.1.34

    Article  Google Scholar 

  6. Mintz, G.S., et al.: Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 94(1), 35–43 (1996). https://doi.org/10.1161/01.cir.94.1.35

    Article  Google Scholar 

  7. Sheppard Mondy, J., Koudy Williams, J., Adams, M.R., Dean, R.H., Geary, R.L.: Structural determinants of lumen narrowing after angioplasty in atherosclerotic nonhuman primates. J. Vascular Surg. 26(5), 875–883 (1997). https://doi.org/10.1016/S0741-5214(97)70103-4

    Article  Google Scholar 

  8. Dai, Z., et al.: Mean platelet volume as a predictor for restenosis after carotid angioplasty and stenting. Stroke 49(4), 872–876 (2018). https://doi.org/10.1161/STROKEAHA.117.019748

    Article  Google Scholar 

  9. Fox, J.: Platelet biology and restenosis. Restenosis Summit VIII Clevel. Clin. Heart Cent., p. 234 (1996)

    Google Scholar 

  10. Bornfeldt, K.E., Raines, E.W., Nakano, T., Graves, L.M., Krebs, E.G., Ross, R.: Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J. Clin. Invest.Clin. Invest. 93(3), 1266–1274 (1994)

    Article  Google Scholar 

  11. Huang, C., Mei, H., Zhou, M., Zheng, X.: A novel PDGF receptor inhibitor-eluting stent attenuates in-stent neointima formation in a rabbit carotid model. Molecular Med. Reports 15(1), 21–28 (2017). https://doi.org/10.3892/mmr.2016.5986

    Article  Google Scholar 

  12. Jingzhou Chen, Y., et al.: PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury. Biochem. Biophys. Res. Commun.. Biophys. Res. Commun. 329(3), 976–983 (2005). https://doi.org/10.1016/j.bbrc.2005.02.062

    Article  Google Scholar 

  13. Kirchner, G.I., Meier-Wiedenbach, I., Manns, M.P.: Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet. 43(2), 83–95 (2004). https://doi.org/10.2165/00003088-200443020-00002

  14. Bae, I.-H., et al.: Novel polymer-free everolimus-eluting stent fabricated using femtosecond laser improves re-endothelialization and anti-inflammation. Sci. Rep. 8(1), 7383 (2018). https://doi.org/10.1038/s41598-018-25629-9

  15. Wang, W., Wang, B., Chen, Y., Wei, S.: Late stent thrombosis after drug-coated balloon coronary angioplasty for in-stent restenosis: a case report. Int. Heart J. 62(1), 171–174 (2021). https://doi.org/10.1536/ihj.20-309

    Article  Google Scholar 

  16. Seawright, J.W., et al.: Vascular smooth muscle contractile function declines with age in skeletal muscle feed arteries. Front. Physiol. 9, 856 (2018). https://doi.org/10.3389/fphys.2018.00856

    Article  Google Scholar 

  17. Huckle, W.R., et al.: Effects of subtype-selective and balanced angiotensin II receptor antagonists in a porcine coronary artery model of vascular restenosis. Circulation 93(5), 1009–1019 (1996). https://doi.org/10.1161/01.CIR.93.5.1009

    Article  Google Scholar 

  18. Ichikawa, N., et al.: Angiotensin II type 1 receptor blockers suppress neointimal hyperplasia after stent implantation in carotid arteries of hypercholesterolemic rabbits. Neurol. Res. 37(2), 147–152 (2015). https://doi.org/10.1179/1743132814Y.0000000436

    Article  Google Scholar 

  19. Yoshikawa, M., et al.: Effects of Combined Treatment with Angiotensin II Type 1 Receptor Blocker and Statin on Stent Restenosis. J. Cardiovasc. Pharmacol.Cardiovasc. Pharmacol. 53(2), 179–186 (2009). https://doi.org/10.1097/FJC.0b013e318199f30b

    Article  Google Scholar 

  20. Tang, B., et al.: Overexpression of angiotensin II type 2 receptor suppresses neointimal hyperplasia in a rat carotid arterial balloon injury model. Mol. Med. Rep. 4(2), 249–254 (2011). https://doi.org/10.3892/mmr.2011.433

    Article  MathSciNet  Google Scholar 

  21. Ahanchi, S.S., Tsihlis, N.D., Kibbe, M.R.: The role of nitric oxide in the pathophysiology of intimal hyperplasia. J. Vasc. Surg.Vasc. Surg. 45(6), A64–A73 (2007). https://doi.org/10.1016/j.jvs.2007.02.027

    Article  Google Scholar 

  22. Wolf, Y.G., Rasmussen, L.M., Ruoslahti, E.: Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model. J. Clin. Invest.Clin. Invest. 93(3), 1172–1178 (1994). https://doi.org/10.1172/JCI117070

    Article  Google Scholar 

  23. Ryan, S.T., Koteliansky, V.E., Gotwals, P.J., Lindner, V.: Transforming growth factor- beta-dependent events in vascular remodeling following arterial injury. J. Vasc. Res.Vasc. Res. 40(1), 37–46 (2003). https://doi.org/10.1159/000068937

    Article  Google Scholar 

  24. Guerri-Guttenberg, R.A., Castilla, R., Francos, G.C., Müller, A., Ambrosio, G., Milei, J.: Transforming growth factor β1 and coronary intimal hyperplasia in pediatric patients with congenital heart disease. Can. J. Cardiol.Cardiol. 29(7), 849–857 (2013). https://doi.org/10.1016/j.cjca.2012.11.018

    Article  Google Scholar 

  25. Casscells, W., et al.: Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors. Proc. Natl. Acad. Sci. 89(15), 7159–7163 (1992). https://doi.org/10.1073/pnas.89.15.7159

  26. Clowes, A.W., Reidy, M.A., Clowes, M.M.: Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab. Investig. J. Tech. Methods Pathol. 49(3), 327–333 (1983)

    Google Scholar 

  27. Marx, S.O., Marks, A.R.: Bench to Bedside. Circulation 104(8), 852–855 (2001). https://doi.org/10.1161/01.CIR.104.8.852

  28. Dong, S.H., Frane, N.D., Christensen, Q.H., Greenberg, E.P., Nagarajan, R., Nair, S.K.: Molecular basis for the substrate specificity of quorum signal synthases. Proc. Natl. Acad. Sci. U.S.A. 114(34), 9092–9097 (2017). https://doi.org/10.1073/pnas.1705400114

    Article  Google Scholar 

  29. Yang, D., et al.: Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation. Int. J. Molecular Med. 41(1), 43–50 (2017). https://doi.org/10.3892/ijmm.2017.3212

    Article  Google Scholar 

  30. Howson, J.M.M., et al.: Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 49(7), 1113–1119 (2017). https://doi.org/10.1038/ng.3874

    Article  Google Scholar 

  31. Zago, A.C., et al.: Identification of Genes Involved in Smooth Muscle Cell Protein Synthesis with Increased Expression in Atheromatous Plaques Associated with Neointimal Hyperplasia after Bare-Metal Stenting: A GENESIS-R Study. Revista Brasileira de Cardiologia Invasiva (English Edition) 20(2), 140–145 (2012). https://doi.org/10.1016/S2214-1235(15)30043-0

    Article  Google Scholar 

  32. Kallenbach, K., Salcher, R., Heim, A., Karck, M., Mignatti, P., Haverich, A.: Inhibition of smooth muscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3. J. Vasc. Surg.Vasc. Surg. 49(3), 750–758 (2009). https://doi.org/10.1016/j.jvs.2008.11.001

    Article  Google Scholar 

  33. Sun, Q., et al.: Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc. Res.. Res. 94(1), 144–153 (2012). https://doi.org/10.1093/cvr/cvs024

    Article  Google Scholar 

  34. Song, M.-J., et al.: Purification and characterization of Prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J. Biosci. Bioeng.Biosci. Bioeng. 101(2), 157–161 (2006). https://doi.org/10.1263/jbb.101.157

    Article  Google Scholar 

  35. Kanta, K., et al.: The Effects of Chymase on matrix metalloproteinase-2 activation in neointimal hyperplasia after balloon injury in dogs. Hypertens. Res.. Res. 30(1), 77–83 (2007). https://doi.org/10.1291/hypres.30.77

    Article  Google Scholar 

  36. Frants, R.R., (John) Kastelein, J.J.P., (Wouter) Jukema, J.W.: Genetic determinants of restenosis (GENDER). (1998). Consulté le: 10 février 2022. [En ligne]. Disponible sur: https://www.narcis.nl/research/RecordID/OND1277043

  37. Hubert, C., Houot, A.M., Corvol, P., Soubrier, F.: Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266(23), 15377–15383 (1991)

    Google Scholar 

  38. Riordan, J.F.: Angiotensin-I-converting enzyme and its relatives. Genome Biol. 4(8), 225 (2003). https://doi.org/10.1186/gb-2003-4-8-225

  39. Miao, H.-W., Gong, H.: Association of ACE insertion or deletion polymorphisms with the risk of coronary restenosis after percutaneous coronary intervention: a meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 16(4), 844–850 (2015). https://doi.org/10.1177/1470320315588233

    Article  Google Scholar 

  40. Wang, S., et al.: Genetic polymorphism of angiotensin converting enzyme and risk of coronary restenosis after percutaneous transluminal coronary angioplasties: evidence from 33 cohort studies. PLoS ONE 8(9), e75285 (2013). https://doi.org/10.1371/journal.pone.0075285

    Article  Google Scholar 

  41. Azova, M., et al.: Gene polymorphisms of the renin-angiotensin-aldosterone system as risk factors for the development of in-stent restenosis in patients with stable coronary artery disease. Biomolecules 11(5), 763 (2021). https://doi.org/10.3390/biom11050763

    Article  Google Scholar 

  42. Thomas Michel, O.F.: Cell and molecular biology of nitric oxide synthases. In: Nitric Oxide and the Cardiovascular System, Joseph Loscalzo and Joseph A., p. 12–14‑15 (2000)

    Google Scholar 

  43. NOS3 nitric oxide synthase 3 [Homo sapiens (human)] - Gene - NCBI. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=4846 (consulté le 6 septembre 2021)

  44. Ben Ali, M., Messaoudi, S., Ezzine, H., Mahjoub, T.: Contribution of eNOS Variants to the genetic susceptibility of coronary artery disease in a tunisian population. Genet. Test. Mol. Biomark. 19(4), 203–208 (2015). https://doi.org/10.1089/gtmb.2014.0261

  45. Gomma, A.H., et al.: The endothelial nitric oxide synthase (Glu298Asp and –786T>C) gene polymorphisms are associated with coronary in-stent restenosis. Eur Heart J. 23(24), 8 (2002)

    Google Scholar 

  46. Derynck, R., et al.: Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316(6030), 701–705 (1985). https://doi.org/10.1038/316701a0

    Article  Google Scholar 

  47. TGFB1 Functional Gene Polymorphisms (C‐509T and T869C) in the Maternal Susceptibility to Pre‐eclampsia in South Indian Women - Deepthi - 2015 - Scandinavian Journal of Immunology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1111/sji.12342 (consulté le 5 juin 2022)

  48. Osadnik, T., Lekston, A., Bujak, K., Strzelczyk, J.K., Poloński, L., Gąsior, M.: The Relationship between VEGFA and TGFB1 Polymorphisms and Target lesion revascularization after elective percutaneous coronary intervention. Dis. Markers 2017, 8165219 (2017). https://doi.org/10.1155/2017/8165219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaa Elmansouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elmansouri, R., Tazzite, A., Dehbi, H., Habbal, R. (2024). Gene’s Association with Coronary Stent Stenosis After Drug Eluting Stent: Review. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 905. Springer, Cham. https://doi.org/10.1007/978-3-031-52385-4_39

Download citation

Publish with us

Policies and ethics