Skip to main content

16S rRNA Gene-Amplicon-Based Profiling of the Vaginal Microbiome From North African Women

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023) (AI2SD 2023)

Abstract

The vaginal microbiome is designed to have low bacterial diversity and is dominated by Lactobacillus species, which acidify this environment and protect against invading pathogens. However, dysbiosis of the vaginal microbiome contributes to many pathologies, including bacterial vaginosis (BV). In microbiome research, NGS technologies are used to analyze the 16S rRNA gene, a molecular marker present in all bacteria and archaea. This gene variability allows researchers to identify different microbial species, providing insights into community composition and diversity. We explored the vaginal microbiome composition in thirty-three North African women using 16S rRNA V3–V4 region sequencing. The number of samples was 11 diseased non-pregnant (DNP), 7 diseased pregnant (DP), 9 healthy non-pregnant (HNP), and 6 healthy pregnant (HP) women at reproductive age (25–40 years old). We intended to identify bacterial taxonomy and diversity using two bioinformatics tools, the DADA2 and EzBioCloud 16S-based Microbiome Taxonomic Profiling (MTP) pipelines. Our findings revealed an overrepresentation of pathogenic bacteria at the species level within women with BV, identified using the EzBioCloud MTP pipeline. Consequently, our efforts resulted in the effective elucidation of bacterial species and diversity using the EzBioCloud 16S-based MTP pipeline. This result contrasts with our efforts using DADA2, where the objective of species differentiation remained unachievable. EzBioCloud makes it a feasible choice for incorporation into clinical diagnostic protocols and novel therapy techniques for bacterial vaginosis. Its ability to distinguish microbiome taxonomy and identify constituent species has the potential to improve our understanding of this disorder and potentially guide therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Lu, Y., Chen, T., Li, R.: The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 271 (2021). https://doi.org/10.3389/fcimb.2021.631972

    Article  Google Scholar 

  2. Diop, K., Dufour, J.-C., Levasseur, A., Fenollar, F.: Exhaustive repertoire of human vaginal microbiota. Hum. Microbiome J. 11, 100051 (2019). https://doi.org/10.1016/j.humic.2018.11.002

    Article  Google Scholar 

  3. Holdcroft, A.M., Ireland, D.J., Payne, M.S.: The vaginal microbiome in health and disease—what role do common intimate hygiene practices play? Microorganisms 11, 298 (2023). https://doi.org/10.3390/microorganisms11020298

    Article  Google Scholar 

  4. Saraf, V.S., Sheikh, S.A., Ahmad, A., Gillevet, P.M., Bokhari, H., Javed, S.: Vaginal microbiome: normalcy vs dysbiosis. Arch. Microbiol. 203, 3793–3802 (2021). https://doi.org/10.1007/s00203-021-02414-3

    Article  Google Scholar 

  5. Ravel, J., et al.: Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U. S. A. 108, 4680–4687 (2011). https://doi.org/10.1073/pnas.1002611107

    Article  Google Scholar 

  6. Valenti, P., et al.: Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Front. Immunol. 9 (2018). https://doi.org/10.3389/fimmu.2018.00376

  7. Castanheira, C.P., Sallas, M.L., Nunes, R.A.L., Lorenzi, N.P.C., Termini, L.: Microbiome and cervical cancer. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 88, 187–197 (2021). https://doi.org/10.1159/000511477

    Article  Google Scholar 

  8. Mendling, W.: Vaginal microbiota. In: Schwiertz, A. (eds.) Microbiota of the Human Body. AEMB, vol. 902, pp. 83–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31248-4_6

  9. López-García, A., et al.: Comparison of mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Front. Microbiol. 9, 3010 (2018). https://doi.org/10.3389/fmicb.2018.03010

    Article  Google Scholar 

  10. Sun, S., et al.: Race, the vaginal microbiome, and spontaneous preterm Birth. mSystems 7, e00017–22 (2022). https://doi.org/10.1128/msystems.00017-22

  11. Caporaso, J.G., et al.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  12. Schloss, P.D., et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009). https://doi.org/10.1128/AEM.01541-09

    Article  Google Scholar 

  13. McMurdie, P.J., Holmes, S.: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013). https://doi.org/10.1371/journal.pone.0061217

    Article  Google Scholar 

  14. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.: DADA2: high resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). https://doi.org/10.1038/nmeth.3869

    Article  Google Scholar 

  15. Ramakodi, M.P.: Influence of 16S rRNA reference databases in amplicon-based environmental microbiome research. Biotech. Lett. 44(3), 523–533 (2022). https://doi.org/10.1007/s10529-022-03233-2

    Article  Google Scholar 

  16. Yoon, S.-H., et al.: Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017). https://doi.org/10.1099/ijsem.0.001755

    Article  Google Scholar 

  17. Mohamed, I., Zakeer, S., Azab, M., Hanora, A.: Changes in vaginal microbiome in pregnant and nonpregnant women with bacterial vaginosis: toward microbiome diagnostics? Omics J. Integr. Biol. 24, 602–614 (2020). https://doi.org/10.1089/omi.2020.0096

    Article  Google Scholar 

  18. Lee, J.H., Kim, H.-W., Mustafa, B., Lee, H.I., Kwon, H.W.: The relationships between microbiome diversity and epidemiology in domestic species of malaria-mediated mosquitoes of Korea. Sci. Rep. 13, 9081 (2023). https://doi.org/10.1038/s41598-023-35641-3

    Article  Google Scholar 

  19. MTP-Primary analysis – EzBioCloud Help center. https://help.ezbiocloud.net/mtp-pipeline/

  20. Szoboszlay, M., Schramm, L., Pinzauti, D., Scerri, J., Sandionigi, A., Biazzo, M.: Nanopore is preferable over illumina for 16S amplicon sequencing of the gut microbiota when species-level taxonomic classification, accurate estimation of richness, or focus on rare taxa is required. Microorganisms 11, 804 (2023). https://doi.org/10.3390/microorganisms11030804

    Article  Google Scholar 

  21. Klair, D., et al.: Exploring taxonomic and functional microbiome of Hawaiian stream and spring irrigation water systems using Illumina and Oxford Nanopore sequencing platforms. Front. Microbiol. 14 (2023)

    Google Scholar 

  22. Takayasu, L., Suda, W., Hattori, M.: Mapping the environmental microbiome. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology. pp. 17–28. Academic Press, Oxford (2019)

    Google Scholar 

  23. Rideout, J.R., et al.: Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545 (2014). https://doi.org/10.7717/peerj.545

    Article  Google Scholar 

  24. Wensel, C.R., Pluznick, J.L., Salzberg, S.L., Sears, C.L.: Next-generation sequencing: insights to advance clinical investigations of the microbiome. J. Clin. Investig. 132, e154944. https://doi.org/10.1172/JCI154944

  25. Sierra, M.A., et al.: The influences of bioinformatics tools and reference databases in analyzing the human oral microbial community. Genes 11, 878 (2020). https://doi.org/10.3390/genes11080878

    Article  Google Scholar 

  26. Allali, I., et al.: A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol. 17, 194 (2017). https://doi.org/10.1186/s12866-017-1101-8

    Article  Google Scholar 

  27. De Filippis, F., Parente, E., Zotta, T., Ercolini, D.: A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota. Int. J. Food Microbiol. 265, 9–17 (2018). https://doi.org/10.1016/j.ijfoodmicro.2017.10.028

    Article  Google Scholar 

  28. Kero, K., et al.: Optimal sampling and analysis methods for clinical diagnostics of vaginal microbiome. Eur. J. Clin. Microbiol. Infect. Dis. 42, 201–208 (2023). https://doi.org/10.1007/s10096-022-04545-x

    Article  Google Scholar 

  29. France, M., Alizadeh, M., Brown, S., Ma, B., Ravel, J.: Towards a deeper understanding of the vaginal microbiota. Nat. Microbiol. 7, 367–378 (2022). https://doi.org/10.1038/s41564-022-01083-2

    Article  Google Scholar 

  30. Dabee, S., Passmore, J.-A.S., Heffron, R., Jaspan, H.B.: The complex link between the female genital microbiota, genital infections, and inflammation. Infect. Immun. 89 (2021). https://doi.org/10.1128/iai.00487-20

  31. Lehtoranta, L., Ala-Jaakkola, R., Laitila, A., Maukonen, J.: Healthy vaginal microbiota and influence of probiotics across the female life span. Front. Microbiol. 13 (2022)

    Google Scholar 

  32. Cocomazzi, G., et al.: The impact of the female genital microbiota on the outcome of assisted reproduction treatments. Microorganisms 11, 1443 (2023). https://doi.org/10.3390/microorganisms11061443

    Article  Google Scholar 

  33. Zapata, H.J., Quagliarello, V.J.: The microbiota and microbiome in aging: potential implications in health and age-related diseases. J. Am. Geriatr. Soc. 63, 776–781 (2015). https://doi.org/10.1111/jgs.13310

    Article  Google Scholar 

  34. Plummer, E.L., et al.: Sexual practices have a significant impact on the vaginal microbiota of women who have sex with women. Sci. Rep. 9, 19749 (2019). https://doi.org/10.1038/s41598-019-55929-7

    Article  Google Scholar 

  35. Mulder, M., et al.: The effect of antimicrobial drug use on the composition of the genitourinary microbiota in an elderly population. BMC Microbiol. 19, 9 (2019). https://doi.org/10.1186/s12866-018-1379-1

    Article  Google Scholar 

  36. Pendharkar, S., Skafte-Holm, A., Simsek, G., Haahr, T.: Lactobacilli and their probiotic effects in the vagina of reproductive age women. Microorganisms 11, 636 (2023). https://doi.org/10.3390/microorganisms11030636

    Article  Google Scholar 

  37. Chee, W.J.Y., Chew, S.Y., Than, L.T.L.: Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Factories 19, 203 (2020). https://doi.org/10.1186/s12934-020-01464-4

    Article  Google Scholar 

  38. Lyra, A., et al.: A healthy vaginal microbiota remains stable during oral probiotic supplementation: a randomised controlled trial. Microorganisms 11, 499 (2023). https://doi.org/10.3390/microorganisms11020499

    Article  Google Scholar 

  39. Chen, X., Lu, Y., Chen, T., Li, R.: The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021). https://doi.org/10.3389/fcimb.2021.631972

    Article  Google Scholar 

  40. Łaniewski, P., Ilhan, Z.E., Herbst-Kralovetz, M.M.: The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 17, 232–250 (2020). https://doi.org/10.1038/s41585-020-0286-z

    Article  Google Scholar 

  41. Smaill, F.M., Vazquez, J.C.: Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane Database Syst. Rev. 2019, CD000490 (2019). https://doi.org/10.1002/14651858.CD000490.pub4

  42. Bartkeviciene, D., et al.: The impact of Ureaplasma infections on pregnancy complications. Libyan J. Med. 15, 1812821. https://doi.org/10.1080/19932820.2020.1812821

  43. Romero, R., et al.: The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2 (2014). https://doi.org/10.1186/2049-2618-2-4

  44. Sroka-Oleksiak, A., et al.: Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy. Microorganisms 8, 1813 (2020). https://doi.org/10.3390/microorganisms8111813

    Article  Google Scholar 

  45. Qi, X., Yun, C., Pang, Y., Qiao, J.: The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13, 1894070 (2021). https://doi.org/10.1080/19490976.2021.1894070

    Article  Google Scholar 

  46. Juliana, N.C.A., Peters, R.P.H., Al-Nasiry, S., Budding, A.E., Morré, S.A., Ambrosino, E.: Composition of the vaginal microbiota during pregnancy in women living in sub-Saharan Africa: a PRISMA-compliant review. BMC Pregnancy Childbirth 21, 596 (2021). https://doi.org/10.1186/s12884-021-04072-1

    Article  Google Scholar 

  47. Redelinghuys, M.J., Geldenhuys, J., Jung, H., Kock, M.M.: Bacterial vaginosis: current diagnostic avenues and future opportunities. Front. Cell. Infect. Microbiol. 10, 354 (2020). https://doi.org/10.3389/fcimb.2020.00354

    Article  Google Scholar 

  48. Alves, P., Castro, J., Sousa, C., Cereija, T.B., Cerca, N.: Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J. Infect. Dis. 210, 593–596 (2014). https://doi.org/10.1093/infdis/jiu131

    Article  Google Scholar 

  49. Schellenberg, J.J., Jayaprakash, T.P., Gamage, N.W., Patterson, M.H., Vaneechoutte, M., Hill, J.E.:Gardnerella vaginalis subgroups defined by cpn60 sequencing and sialidase activity in isolates from Canada, Belgium and Kenya. PLoS ONE 11, e0146510 (2016). https://doi.org/10.1371/journal.pone.0146510

  50. Kovach, K., et al.: Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes 3, 1 (2017). https://doi.org/10.1038/s41522-016-0007-9

    Article  Google Scholar 

  51. Muzny, C.A., et al.: An updated conceptual model on the pathogenesis of bacterial vaginosis. J. Infect. Dis. 220, 1399–1405 (2019). https://doi.org/10.1093/infdis/jiz342

    Article  Google Scholar 

  52. Muzny, C.A., et al.: Identification of key bacteria involved in the induction of incident bacterial vaginosis: a prospective study. J. Infect. Dis. 218, 966–978 (2018). https://doi.org/10.1093/infdis/jiy243

    Article  Google Scholar 

  53. Gilbert, N.M., Lewis, W.G., Li, G., Sojka, D.K., Lubin, J.B., Lewis, A.L.: Gardnerella vaginalis and prevotella bivia trigger distinct and overlapping phenotypes in a mouse model of bacterial vaginosis. J. Infect. Dis. 220, 1099–1108 (2019). https://doi.org/10.1093/infdis/jiy704

    Article  Google Scholar 

  54. Machado, A., Cerca, N.: Influence of biofilm formation by gardnerella vaginalis and other anaerobes on bacterial vaginosis. J. Infect. Dis. 212, 1856–1861 (2015). https://doi.org/10.1093/infdis/jiv338

    Article  Google Scholar 

  55. Beebout, C.J., et al.: Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic escherichia coli. mBio 10, e02400-18 (2019). https://doi.org/10.1128/mBio.02400-18

  56. Castro, J., Machado, D., Cerca, N.: Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME J. 13, 1306–1317 (2019). https://doi.org/10.1038/s41396-018-0337-0

    Article  Google Scholar 

  57. Abou Chacra, L., Fenollar, F., Diop, K.: Bacterial vaginosis: what do we currently know? Front. Cell. Infect. Microbiol. 11 (2022)

    Google Scholar 

  58. Hardy, L., et al.: A fruitful alliance: the synergy between Atopobium vaginae and Gardnerella vaginalis in bacterial vaginosis-associated biofilm. Sex. Transm. Infect. 92, 487–491 (2016). https://doi.org/10.1136/sextrans-2015-052475

    Article  Google Scholar 

  59. Zhan, X., Li, J., Guo, Y., Golubnitschaja, O.: Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J. 12, 449–475 (2021). https://doi.org/10.1007/s13167-021-00265-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghazal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jbara, S. et al. (2024). 16S rRNA Gene-Amplicon-Based Profiling of the Vaginal Microbiome From North African Women. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 905. Springer, Cham. https://doi.org/10.1007/978-3-031-52385-4_14

Download citation

Publish with us

Policies and ethics