Skip to main content

Removal of EOG Artifact in Electroencephalography with EEMD-ICA: A Semi-simulation Study on Identification of Artifactual Components

  • Conference paper
  • First Online:
Internet of Things of Big Data for Healthcare (IoTBDH 2023)

Abstract

Purpose: The electroencephalography (EEG) signals recorded in clinical settings are usually corrupted by electrooculography (EOG) artifacts. EEMD-ICA is a commonly used method for removing EOG artifacts. This study aims at exploring the performance of different methods of identification of artifactual components under the framework of EEMD-ICA.

Methods: This study is conducted in a semi-simulated way. A EEG dataset covering signal of SNR from -1 to 2 is generated based on the EEG and EOG segments from two public datasets. Characterized by the artifactual components identification method, EEMD-ICA\(_{kurt}\), EEMD-ICA\(_{entropy}\), EEMD-ICA\(_{autocor}\) and EEMD-ICA\(_{eogcor}\) are proposed and evaluated in terms of Normalized Mean Square Error (NMSE), Cross Correlation (CC) and Structural Similarity Index (SSIM) on this dataset.

Results: EEMD-ICA\(_{autocor}\) outperforms other three approaches and demonstrates the strongest versatility. Besides successfully eliminating EOAs from EEG signals, it loses the least neuron activities.

Conclusion: Although performance metrics improve as SNR increases, the loss of structure information also improves (SNR > 1). In practice, it is vital to estimate the SNR of data before applying these approaches because when SNR is high, these methods may have a counterproductive.

Supported by Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62301452) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China-General Programme (Grant No. 21KJB510024).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., et al.: Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation. J. Neural Eng. 13(6), 066016 (2016). https://doi.org/10.1088/1741-2560/13/6/066016

  2. Chen, X., et al.: Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput. Biol. Med. 88, 1–10 (2017). ISSN: 0010–4825. https://doi.org/10.1016/j.compbiomed.2017.06.013, https://www.sciencedirect.com/science/article/pii/S0010482517301774

  3. Chen, X., et al.: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans. Instrum. Measur. 67(2), 359–370 (2017)

    Article  Google Scholar 

  4. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. 134(1), 9–21 (2004). https://doi.org/10.1016/J.JNEUMETH.2003.10.009

  5. Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4), 1443–1449 (2007). ISSN: 1053–8119. https://doi.org/10.1016/j.neuroimage.2006.11.004, https://www.sciencedirect.com/science/article/pii/S1053811906011098

  6. Elbert, T., et al.: Removal of ocular artifacts from the EEG – a biophysical approach to the EOG. Electroencephalogr. Clin. Neurophysiol. 60(5), 455–463 (1985). ISSN: 0013–4694. https://doi.org/10.1016/0013-4694(85)91020-X, https://www.sciencedirect.com/science/article/pii/001346948591020X

  7. Gabard-Durnam, L.J., et al.: The harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front. Neurosci. 12, 97 (2018)

    Article  Google Scholar 

  8. Jiang, X., Bian, G.B., Tian, Z.: Removal of artifacts from EEG signals: a review. Sensors 19(5), 987 (2019)

    Article  Google Scholar 

  9. Klados, M.A., Bamidis, P.D.: A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data Brief 8, 1004–1006 (2016). ISSN: 2352–3409. https://doi.org/10.1016/j.dib.2016.06.032, https://www.sciencedirect.com/science/article/pii/S2352340916304000

  10. Klados, M.A., et al.: REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts. Biomed. Sig. Process. Control 6(3), 291–300 (2011). ITAB 2009, ISSN: 1746–8094. https://doi.org/10.1016/j.bspc.2011.02.001, https://www.sciencedirect.com/science/article/pii/S1746809411000061

  11. Looney, D., Li, L., Rutkowski, T.M., Mandic, D.P., Cichocki, A.: Ocular artifacts removal from EEG using EMD. In: Wang, R., Shen, E., Gu, F. (eds.) Advances in Cognitive Neurodynamics ICCN 2007, pp. 831–835. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8387-7_145

  12. Mannan, M.M.N., Kamran, M.A., Jeong, M.Y.: Identification and removal of physiological artifacts from electroencephalogram signals: A review. IEEE Access 6, 30630–30652 (2018). https://doi.org/10.1109/ACCESS.2018.2842082

    Article  Google Scholar 

  13. Mijović, B., et al.: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 57(9), 2188–2196 (2010)

    Article  Google Scholar 

  14. Minguillon, J., Lopez-Gordo, M.A., Pelayo, F.: Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed. Sig. Process. Control 31, 407–418 (2017). ISSN: 1746–8094. https://doi.org/10.1016/j.bspc.2016.09.005, https://www.sciencedirect.com/science/article/pii/S1746809416301318

  15. Noachtar, S. and Rémi, J.: The role of EEG in epilepsy: a critical review. Epilepsy Behav. 15(1), 22–33 (2009). ISSN: 1525–5050. https://doi.org/10.1016/j.yebeh.2009.02.035., https://www.sciencedirect.com/science/article/pii/S1525505009000924

  16. Qi, J., et al.: An overview of data fusion techniques for internet of things enabled physical activity recognition and measure. Inf. Fusion 55 269–280 (2020). ISNN: 1566–2535. https://doi.org/10.1016/j.inffus.2019.09.002, https://www.sciencedirect.com/science/article/pii/S1566253519302258

  17. Simons, S., Espino, P., Abásolo, D.: Fuzzy entropy analysis of the electroencephalogram in patients with alzheimer’s disease: is the method superior to sample entropy? Entropy 20(1), 21 (2018). https://doi.org/10.3390/E20010021

  18. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal–state-of the-art and guidelines. 3(1), 031001 (2015). https://doi.org/10.1088/1741-2560/12/3/031001

  19. Wang, G., et al.: The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J. Biomed. Health Inf. 20(5), 1301–1308 (2016). https://doi.org/10.1109/JBHI.2015.2450196

    Article  Google Scholar 

  20. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  21. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)

    Article  Google Scholar 

  22. Xu, X., Chen, X., Zhang, Y.: Removal of muscle artefacts from few-channel EEG recordings based on multivariate empirical mode decomposition and independent vector analysis. Electron. Lett. 54(14), 866–868 (2018)

    Article  Google Scholar 

  23. Yang, P., et al.: Activity graph based convolutional neural network for human activity recognition using acceleration and gyroscope data. IEEE Trans. Ind. Inf. 18(10), 6619–6630 (2022). https://doi.org/10.1109/TII.2022.3142315

    Article  Google Scholar 

  24. Zeng, K., et al.: An EEMD-ICA approach to enhancing artifact rejection for noisy multivariate neural data. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 630–638 (2015)

    Article  Google Scholar 

  25. Zhang, H., et al.: EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising. J. Neural Eng. 18(5), 056057 (2021). https://doi.org/10.1088/1741-2552/ac2bf8

    Article  Google Scholar 

  26. Zhou, M., Yang, P.:. Automatic temporal relation in multi- task learning. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3570–3580 (2023)

    Google Scholar 

  27. Zhou, M., et al.: Robust temporal smoothness in multi-task learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 9. pp. 11426–11434 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Jiang, W., Wang, W., Chen, J., Shen, Y., Qi, J. (2024). Removal of EOG Artifact in Electroencephalography with EEMD-ICA: A Semi-simulation Study on Identification of Artifactual Components. In: Qi, J., Yang, P. (eds) Internet of Things of Big Data for Healthcare. IoTBDH 2023. Communications in Computer and Information Science, vol 2019. Springer, Cham. https://doi.org/10.1007/978-3-031-52216-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52216-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52215-4

  • Online ISBN: 978-3-031-52216-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics