Skip to main content

Cellulose and Lignin Nanoparticles in the Development of New Sustainable Applications

  • Chapter
  • First Online:
Biorefinery and Industry 4.0: Empowering Sustainability

Part of the book series: Green Energy and Technology ((GREEN))

  • 77 Accesses

Abstract

Cellulose nanoparticles (CNs) have emerged as one of the most promising eco-friendly materials due to their sustainable potential and outstanding physical and mechanical properties. These properties include exceptional optical attributes, an anisotropic shape, and high mechanical strength. A significant factor that adds to their appeal is that they are derived from cellulose, a resource that is abundant, non-toxic, biodegradable, and biocompatible resource. Lignin, which once was considered an undesirable by-product of the pulping process, has been the subject of extensive research to enhance its value. Although it is primarily used to produce renewable energy in industries, the growing potential of lignin from both process and economic perspectives is noteworthy, especially as the global demand for bio-based products increases. However, the methods employed to valorize this macromolecule present challenges, leaving lignin a somewhat underexploited renewable resource. An innovative approach for lignin has been its conversion into lignin nanoparticles (LNPs). Both LNPs and CNs are emerging as valuable materials in a range of applications in materials engineering, from packaging to biomedical fields. The development of new nanocomposites, derived from CNs and LNPs, merges the benefits of these nanomaterials with their plant-based origins. When integrated with other polymeric matrices, they offer unique properties such as hydrophobicity, UV protection, and antimicrobial activity. This chapter explores the latest advancements in CNs and LNPs production and their potential uses, drawing from contemporary literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho EJ et al. (2020) Bioconversion of biomass waste into high value chemicals. Bioresour Technol 298(November 2019):122386

    Google Scholar 

  2. Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5(2):76–89, 15 Jun 2019

    Google Scholar 

  3. Inoue BS et al (2020) Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int J Biol Macromolecules 148:1098–1108.

    Google Scholar 

  4. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90(March):877–891

    Article  Google Scholar 

  5. Lin D et al (2020) International Journal of Biological Macromolecules Bacterial cellulose in food industry : current research and future prospects. Int J Biol Macromolecules 158:1007–1019

    Google Scholar 

  6. Seabra AB et al (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym 181(n. December 2017), 514–527

    Google Scholar 

  7. Yang J, Li J (2018) Self-assembled cellulose materials for biomedicine : a review. Carbohydr Polym 181(August 2017):264–274

    Google Scholar 

  8. GE, S. et al. An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Science of The Total Environment, v. 813, p. 152418, mar. 2022.

    Google Scholar 

  9. Leibensperger C et al (2021) The synergy between stakeholders for cellulosic biofuel development: perspectives, opportunities, and barriers. Renew Sustain Energy Rev 137:110613, Mar 2021

    Google Scholar 

  10. Teow YH, Amirudin SN, Ho KC (2020) Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment. J Water Process Eng 34(February):101182

    Google Scholar 

  11. Tong R et al (2020) Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydr Polym 227(July 2019)

    Google Scholar 

  12. TAPPI (2011) Roadmap for the development of international standards for nanocelluloseTAPPI. Peachtree Corners: [s.n.]. Disponível em: https://www.tappinano.org/whats-up/standards-summary/

  13. Omran AAB et al (2021) Micro- and nanocellulose in polymer composite materials: a review. Polymers 13(2):231, 11 Jan 2021

    Google Scholar 

  14. Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd Polym 111:442–448

    Article  Google Scholar 

  15. Ahmad D et al (2018) Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A: Recovery, Utilization, Environ Eff 40(22):2686–2725, 17 Nov 2018

    Google Scholar 

  16. Daud JB, LEE K-Y (2017) Surface modification of nanocellulose. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH, Weinheim, v 1, p 101–123

    Google Scholar 

  17. Zhang J et al (2021) Corrosion protection properties of an environmentally friendly polyvinyl alcohol coating reinforced by a heating treatment and lignin nanocellulose. Prog Organic Coat 155(January):106224, Jun 2021

    Google Scholar 

  18. Kontturi KS et al (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33(23):5707–5712

    Google Scholar 

  19. Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Progress in Polym Sci 88:241–264, Jan 2019

    Google Scholar 

  20. Gupta AK, Mohanty S, Nayak SK (2015) Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater Focus 3(6):444–454

    Article  Google Scholar 

  21. Tian D et al (2017) Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10(1):1–11

    Google Scholar 

  22. Yang W et al (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139, Out

    Google Scholar 

  23. Kargarzadeh H et al (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. Ed, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–50

    Google Scholar 

  24. Huang J et al (2017) Fully green cellulose nanocomposites. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. ed. Wiley-VCH, Weinheim, v. Ip. 301–334

    Google Scholar 

  25. Hamedi M et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042

    Google Scholar 

  26. Kim JH et al (2015) Review of nanocellulose for sustainable future materials. Int J Precision Eng Manufacturing Green Technol 2(2):197–213

    Google Scholar 

  27. Li Y et al (2017) Nanocellulose aerogels inspired by Frozen Tofu. ACS Sustain Chem Eng 5(8):6387–6391

    Google Scholar 

  28. MI QY et al. (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660

    Google Scholar 

  29. Lin N et al (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B: Biointerfaces 85(2):270–279, Jul 2011

    Google Scholar 

  30. Shimotoyodome A et al (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12(10):3812–3818, 10 Out 2011

    Google Scholar 

  31. Zhu C et al (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res Part A, 102(5):1548–1557, Maio 2014

    Google Scholar 

  32. Paulraj T, Riazanova AV, Svagan AJ (2018) Bioinspired capsules based on nanocellulose, xyloglucan and pectin—The influence of capsule wall composition on permeability properties. Acta Biomaterialia 69:196–205, 15 Mar 2018

    Google Scholar 

  33. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92(2):1432–1442

    Article  MathSciNet  Google Scholar 

  34. Khan A et al (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54(2):163–174

    Google Scholar 

  35. Lin N and Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325, Out 2014

    Google Scholar 

  36. Berto GL, Arantes V (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int J Biol Macromol 127:637–648

    Article  Google Scholar 

  37. Koponen AI (2020) The effect of consistency on the shear rheology of aqueous suspensions of cellulose micro- and nanofibrils: a review. Cellulose 27(4):1879–1897, 12 Mar 2020

    Google Scholar 

  38. Nair SS et al (2014) High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem 7(12):3513–3520

    Google Scholar 

  39. Nechyporchuk O, Pignon F, Belgacem MN (2014) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541

    Article  Google Scholar 

  40. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  Google Scholar 

  41. Jozala A F et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072, 8 Mar 2016

    Google Scholar 

  42. Dusfrene A (2012) Nanocellulose : From nature to high performance tailored materials. In: Dufresne A (ed) Nanocellulose : From nature to high performance tailored materials. 1. ed. Munchen: [s.n.]. p. 1

    Google Scholar 

  43. Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396, out. 2014

    Google Scholar 

  44. Trache D et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Google Scholar 

  45. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4):1086–1093

    Article  Google Scholar 

  46. Espinosa E et al (2019) PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int J Biol Macromolecules 141:197–206, Dec 2019

    Google Scholar 

  47. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  Google Scholar 

  48. Hoeger IC et al (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    Google Scholar 

  49. QING Y et al (2015) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crops Products 77:13–20

    Google Scholar 

  50. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  51. Tasker S et al (1994) Hydroxyl accessibility in celluloses. Polym 35(22):4717–4721

    Google Scholar 

  52. Fengel D, Wegener G (1983) Cellulose. Em: WOOD: chemistry, ultrastructure, reactions. 1. ed. Walter de Gruyter, Berlin, pp 66–105

    Google Scholar 

  53. Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin

    Google Scholar 

  54. Trejo-O’reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibres in view of their use in composite materials. Cellulose 4(4):305–320

    Google Scholar 

  55. Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158

    Google Scholar 

  56. Xie J, Liu S (2021) A review of hydrophobic nanocellulose and its applications. Paper Biomater 6(2):35–42

    Google Scholar 

  57. GOU J et al (2021) A phosphorylated nanocellulose/hydroxypropyl methylcellulose composite matrix: a biodegradable, flame-retardant and self-standing gel polymer electrolyte towards eco-friendly and high safety lithium ion batteries. Eur Polym J 158(June):110703, Set 2021

    Google Scholar 

  58. Kim Y et al (2022) Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. J Hazard Mater 426(November 2021):128078, Mar 2022

    Google Scholar 

  59. Abraham E et al (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095, 19 out 2016

    Google Scholar 

  60. Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Google Scholar 

  61. Lacerda PSS et al (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 14(6):2063–2073

    Google Scholar 

  62. Lin W et al (2018) Hydrophobic modification of Nanocellulose via a Two-Step silanation method. Polym 10(9):1035

    Google Scholar 

  63. Tanpichai S et al (2022) Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr Polym 286(February):119192, Jun 2022

    Google Scholar 

  64. Nohara T et al (2016) Enzymatic synthesis of oligo(ethylene glycol)-bearing cellulose oligomers for in situ formation of hydrogels with crystalline nanoribbon network structures. Langmuir 32(47):12520–12526

    Google Scholar 

  65. Raquez JM et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542

    Google Scholar 

  66. Espino-Pérez E et al (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23(5):2955–2970

    Google Scholar 

  67. Eyholzer C et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30

    Google Scholar 

  68. Dandekar T (2016) Modified bacterial nanocelluloses and its uses in chip cards and medicine. WO 2016/174104 Al. Alemanha, 2016

    Google Scholar 

  69. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  Google Scholar 

  70. Yudong Z et al (2013) A method for preparing esterified responsive nanocellulose prodrug sustained release material stimulation. China

    Google Scholar 

  71. Sreeraj PR, Mishra SK, Singh PK (2022) Characteristic features and functions of nanocellulose for its feasible application in textile industry. Em: Nanocellulose Mater . [s.l.] Elsevier, 2022. 105–122

    Google Scholar 

  72. Karampelas BE (2016) Automotive tires containing hydrophobic nanocellulose US 2016/0122515 A1. USA

    Google Scholar 

  73. Xin F et al (2014) Preparation method of transparent nano-cellulose paper with fluorescence properties. China

    Google Scholar 

  74. ABDULKHANI A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79

    Google Scholar 

  75. BOŽIČ M et al (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351

    Google Scholar 

  76. Sirviö JA et al (2015) Phosphonated nanocelluloses from sequential oxidative–reductive treatment—Physicochemical characteristics and thermal properties. Carbohydr Polym 133:524–532, Nov 2015

    Google Scholar 

  77. Suopajärvi T, Sirviö JA, Liimatainen H (2017) Cationic nanocelluloses in dewatering of municipal activated sludge. J Environ Chem Eng 5(1):86–92

    Article  Google Scholar 

  78. Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO 2 2+ in water. ACS Macro Lett 1(1):213–216, 17 Jan 2012

    Google Scholar 

  79. Sehaqui H et al (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21(4):2831–2844, 7 ago. 2014

    Google Scholar 

  80. Alvarado DR et al (2019) A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chem 21(12):3424–3435

    Google Scholar 

  81. Sun M, Wang H, Li X (2020) Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for Enterovirus 71 adsorption. Mater Lett 277(January):128320, Out. 2020

    Google Scholar 

  82. Stenstad P et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45

    Google Scholar 

  83. Karim Z et al (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7(9):5232–5241

    Google Scholar 

  84. Liu D et al (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30(31):9544–9550, 12 ago 2014

    Google Scholar 

  85. Liu P et al (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21(1):449–461, 5 Feb 2014

    Google Scholar 

  86. Rusmirović JD et al (2017) Novel modified nanocellulose applicable as reinforcement in high-performance nanocomposites. Carbohydr Polym 164:64–74

    Google Scholar 

  87. Ansari F et al (2015) Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) Matrix. Biomacromolecules, 16(12):3916–3924, 14 dec 2015

    Google Scholar 

  88. Poaty B et al (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Organic Coat 77(4):813–820, Abr 2014

    Google Scholar 

  89. Satyamurth P, Nadanathangam V (2018) Nanocellulose as functional filler in starch/polyvinyl alcohol film for preparation of urea biosensor Prasad Satyamurthy and. Curr Sci 114(February):897–902

    Article  Google Scholar 

  90. Espino-Pérez E et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560

    Google Scholar 

  91. Li ZQ, Zhou XD, Pei CH (2010a) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater Polym Biomater 59(9):725–737

    Article  Google Scholar 

  92. Zhijiang C et al (2018) Preparation, characterization and antibacterial activity of biodegradable polyindole/bacterial cellulose conductive nanocomposite fiber membrane. Mater Lett 222:146–149, Jul 2018

    Google Scholar 

  93. Shahriari-Khalaji M et al (2021) Functionalization of Aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng 7(8):3933–3946, 9 ago. 2021

    Google Scholar 

  94. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2(10):5444–5451

    Google Scholar 

  95. Wang L et al (2017) Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos Part A Appl Sci Manuf 98:166–173

    Google Scholar 

  96. Nascimento DM et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448

    Google Scholar 

  97. Alexandrescu L et al (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775

    Google Scholar 

  98. LAM E et al (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290, Maio 2012

    Google Scholar 

  99. Hokkanen S, Sillanpää M (2020) Nano- and microcellulose-based adsorption materials in water treatment. Em: SILLANPÄÄ M (ed) Advanced water treatment: adsorption. 1. ed. Elsevier, Miami, p 1–83

    Google Scholar 

  100. BÖRJESSON M et al (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135(10):45963, 10 Mar 2018

    Google Scholar 

  101. Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2(30):4767–4788

    Article  Google Scholar 

  102. Li Z, Renneckar S, Barone JR (2010b) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17(1):57–68

    Article  Google Scholar 

  103. Garcia-Ubasart, J et al (2012) A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound. Bioresour Technol 112:341–344

    Google Scholar 

  104. Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85

    Google Scholar 

  105. CAO L et al (1996) Lipase-catalyzed solid phase synthesis of sugar fatty acid esters. Biocatal Biotransformation 14(4):269–283

    Google Scholar 

  106. Payne GF, Chaubal MV, Barbari TA (1996) Enzyme-catalysed polymer modification: Reaction of phenolic compounds with chitosan films. Polymer 37(20):4643–4648

    Article  Google Scholar 

  107. Kamaya Y (1996) Role of endoglucanase in enzymatic modification of bleached kraft pulp. J Ferment Bioeng 82(6):549–553

    Google Scholar 

  108. LI J et al (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32(8):2789–2792

    Google Scholar 

  109. Yang K, Wang YJ (2003) Lipase-catalyzed cellulose acetylation in aqueous and organic media. Biotechnol Prog 19(6):1664–1671

    Article  Google Scholar 

  110. Karim Z et al (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechn 37(3):355–370

    Google Scholar 

  111. Nelson K, Retsina T (2014) Innovative nanocellulose process breaks the cost barrier. Tappi J 13(5):19–23

    Article  Google Scholar 

  112. INOFIB. InoFib (2019) Disponível em: http://www.inofib.fr/lentreprise/. Acesso em: 12 Mar 2019

  113. Wen Y et al (2019) Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization. ACS Sustain Chem Eng 7(6):6131–6139

    Google Scholar 

  114. Rojo E et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866

    Google Scholar 

  115. Zhao H et al (2019) Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. Int J Biol Macromol 137:1161–1168, Set. 2019

    Google Scholar 

  116. Nirmale TC, Kale BB, Varma AJA (2017) A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. Int J Biol Macromol 103:1032–1043, Out 2017

    Google Scholar 

  117. Kazzaz AE, Fatehi P (2020) Technical lignin and its potential modification routes: a mini-review. Ind Crops Prod 154(July):112732, out 2020

    Google Scholar 

  118. Sabaruddin FA et al (2020) The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polym 13(1):116 30 Dec 2020

    Google Scholar 

  119. Yang M et al (2020) Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films. Int J Biol Macromol 158:1259–1267

    Google Scholar 

  120. Wang L et al (2021) On laccase-catalyzed polymerization of biorefinery lignin fractions and alignment of lignin nanoparticles on the nanocellulose SurfaceviaOne-pot water-phase synthesis. ACS Sustain Chem Eng 9(26):8770–8782

    Google Scholar 

  121. Zhang Z, Terrasson V, Guénin E (2021) Lignin nanoparticles and their nanocomposites. Nanomaterials 11(5)

    Google Scholar 

  122. Chio C, Sain M, Qin W (2018) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107(December 2018):232–249

    Google Scholar 

  123. Lievonen M et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1422

    Google Scholar 

  124. Cline SP, Smith PM (2017) Opportunities for lignin valorization: an exploratory process. Energ Sustain Soc 7(1):26, 28 Dec 2017

    Google Scholar 

  125. ARO T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877, 9 maio 2017

    Google Scholar 

  126. CAO Y et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291(May, 2019)

    Google Scholar 

  127. Iravani S, Varma RS (2020) Greener synthesis of lignin nanoparticles and their applications. Green Chem 22(3):612–636

    Article  Google Scholar 

  128. Yang W et al (2015) Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Ind Crops Prod 77:833–844, Dec 2015b

    Google Scholar 

  129. Jiang C et al (2013) Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym Lett 7(5):480–493

    Google Scholar 

  130. AGO M et al (2016) High-throughput synthesis of lignin particles (∼30 nm to ∼2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions. ACS Appl Mater Interfaces 8(35):23302–23310

    Google Scholar 

  131. Chen L et al (2018) Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem Eng J 346(January):217–225

    Google Scholar 

  132. Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111, 13 ago. 2011

    Google Scholar 

  133. XIONG, F. et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind Crops Prod 100:146–152

    Google Scholar 

  134. Myint AA et al (2016) One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem 18(7):2129–2146

    Google Scholar 

  135. Kai D et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200

    Google Scholar 

  136. Saratale RG et al (2019) Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol 128:391–400, Maio 2019

    Google Scholar 

  137. CHEN Y et al (2019) Preparation and characterization of a nanolignin phenol formaldehyde resin by replacing phenol partially with lignin nanoparticles. RSC Adv 9(50):29255–29262

    Google Scholar 

  138. Chen Y et al (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 128:414–420

    Google Scholar 

  139. Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375

    Article  Google Scholar 

  140. Ge Y, Wei Q, Li Z (2014) Preparation and evaluation of the free radical scavenging activities of nanoscale lignin biomaterials. BioResources 9(4):6699–6706

    Article  Google Scholar 

  141. Feldman D (2016) Lignin nanocomposites. J Macromol Sci Part A, 53(6):382–387, 2 Jun 2016

    Google Scholar 

  142. Sadeghifar H et al (2019) Bi-component carbohydrate and lignin nanoparticle production from bio-refinery lignin: a rapid and green method. BioResources 14(3):6179–6185

    Google Scholar 

  143. Agustin MB et al (2019) Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by Mild Ultrasonication. ACS Sustain Chem Eng 7(24):19925–19934

    Google Scholar 

  144. Garcia Gonzalez MN et al (2017) Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J Appl Polym Sci 134(38):1–10

    Google Scholar 

  145. Wang B et al Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666

    Google Scholar 

  146. Yearla SR, Padmasree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11(4):289–302

    Article  Google Scholar 

  147. Sipponen MH et al (2018) Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain Chem Eng 6(7):9342–9351

    Google Scholar 

  148. Lintinen K et al (2018) Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method. Green Chem 20(4):843–850

    Google Scholar 

  149. Yang W et al (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustainable Chem Eng 6(3):3502–3514

    Google Scholar 

  150. Pasquier E et al (2021) Lignin nanoparticle nucleation and growth on cellulose and chitin nanofibers. Biomacromolecules 22(2):880–889

    Google Scholar 

  151. Farooq M et al (2019) Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 20(2):693–704

    Google Scholar 

  152. Zhang Y et al (2019) From biomass to nanomaterials: a green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation. ACS Sustain Chem Eng 7(7):6592–6600

    Google Scholar 

  153. Juikar SJ, Vigneshwaran N (2017) Microbial production of coconut fiber nanolignin for application onto cotton and linen fabrics to impart multifunctional properties. Surfaces Interfaces 9:147–153

    Article  Google Scholar 

  154. S S et al (2023) Influence of reaction conditions on synthesis and applications of lignin nanoparticles derived from agricultural wastes. Environ Technol Innov 31:103163, 1 ago 2023

    Google Scholar 

  155. Alqahtani MS et al (2019) Novel lignin nanoparticles for oral drug delivery. J Mater Chem B, 7(28):4461–4473

    Google Scholar 

  156. Dai L et al (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249, 5 set 2017

    Google Scholar 

  157. Yang W et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12, 1 Jun 2016

    Google Scholar 

  158. Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6(5):7181–7192, 7 Maio 2018

    Google Scholar 

  159. LI X et al (2018) One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 8(3), 1 Mar 2018

    Google Scholar 

  160. Wang B et al (2019) Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666, 22 Jan 2019b.

    Google Scholar 

  161. Norizan MN et al (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. NanomaterialsMDPI, 1 Out 2022

    Google Scholar 

  162. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellu 24(3):1171–1197, 20 Mar 2017

    Google Scholar 

  163. Wang J et al (2022) Source of nanocellulose and its application in nanocomposite packaging material: a review. NanomaterialsMDPI, 1 Set 2022

    Google Scholar 

  164. Tanpichai S (2022) Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: a mini-review. Express Polym Lett 16(1):52–74, 1 Jan 2022

    Google Scholar 

  165. Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446, 1 Jan 2018

    Google Scholar 

  166. Tran VH et al (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28(4):1169–1179, 11 Abr 2020

    Google Scholar 

  167. Zhou X et al (2019) Tannin-furanic resin foam reinforced with cellulose nanofibers (CNF). Ind Crops Prod 134:107–112, 1 ago 2019

    Google Scholar 

  168. Liu Y et al (2022) Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biological Macromol, Elsevier B.V., 1 Dec 2022

    Google Scholar 

  169. Balasubramaniam B et al (2021) Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci 4(1):8–54, 12 Feb 2021

    Google Scholar 

  170. Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromolecules 19(6):1764–1782, 11 Jun 2018

    Google Scholar 

  171. Liang R et al (2020) Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230, 1 Feb 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdeir Arantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marotti, B.S., Arantes, V. (2024). Cellulose and Lignin Nanoparticles in the Development of New Sustainable Applications. In: Chandel, A.K. (eds) Biorefinery and Industry 4.0: Empowering Sustainability. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-51601-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51601-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51600-9

  • Online ISBN: 978-3-031-51601-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics