Skip to main content

Cork-Based Structures in Energy Absorption Applications

  • Chapter
  • First Online:
Cork-Based Materials in Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 56 Accesses

Abstract

The property of energy absorption (EA) is a fundamental principle in engineering structures to dissipate energy when it impacted with a foreign object or is exposed to an explosion. Due to their capacity to absorb energy, materials with cellular structure have high energy-absorbing capabilities. Cork is one of the materials found in the nature that has attracted researchers' attention due to its cellular structure for energy-absorbing applications. In this chapter, we investigate the energy-absorbing capability of cork materials. At first, the literature related to energy absorption structures with using cork materials was reviewed. Then, experimentally, the energy absorption ability of two types of cork (fine and coarse agglomerated) with two different types of synthetic foams (XPS and PVC) has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarlochan F (2021) Sandwich structures for energy absorption applications: a review. Materials 14:4731. https://doi.org/10.3390/ma14164731

    Article  Google Scholar 

  2. Farley GL (1983) Energy absorption of composite materials. J Compos Mater 17:267–279. https://doi.org/10.1177/002199838301700307

    Article  Google Scholar 

  3. Ha NS, Lu G (2020) A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos B Eng 181:107496. https://doi.org/10.1016/j.compositesb.2019.107496

    Article  Google Scholar 

  4. Lu G, Yu T (2003) Energy absorption of structures and materials. Woodhead Publishing Limited, London

    Book  Google Scholar 

  5. Gladysz GM, Chawla KK (2015) Cellular materials. In: Voids in materials. Elsevier, Amsterdam, pp 103–130

    Chapter  Google Scholar 

  6. Novak N, Vesenjak M, Nishi M et al (2021) Mechanical behavior of cellular materials – from quasistatic to high strain rate impact response. In: Explosion, shock-wave and high-strain-rate phenomena of advanced materials. Elsevier, London, pp 109–154

    Chapter  Google Scholar 

  7. Gibson LJ (1989) Modelling the mechanical behavior of cellular materials. Mater Sci Eng A 110:1–36. https://doi.org/10.1016/0921-5093(89)90154-8

    Article  Google Scholar 

  8. Baroutaji A, Arjunan A, Niknejad A et al (2019) Application of cellular material in crashworthiness applications: an overview. In: Reference module in materials science and materials engineering. Elsevier, Amsterdam

    Google Scholar 

  9. Habib F, Iovenitti P, Masood S et al (2019) Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption. Int J Adv Manuf Technol 103:2347–2361. https://doi.org/10.1007/s00170-019-03541-4

    Article  Google Scholar 

  10. Aroso IM, Araújo AR, Pires RA, Reis RL (2017) Cork: current technological developments and future perspectives for this natural, renewable, and sustainable material. ACS Sustain Chem Eng 5:11130–11146. https://doi.org/10.1021/acssuschemeng.7b00751

    Article  Google Scholar 

  11. Ana Carina P, Han B, Helena P, Joost V (2012) Cork and sustainability: discussing the sustainable use of the material from a design perspective. J Shanghai Jiaotong Univ Sci 17:360–363. https://doi.org/10.1007/s12204-012-1287-8

    Article  Google Scholar 

  12. Leal S, Nunes E, Pereira H (2008) Cork oak (Quercus suber L.) wood growth and vessel characteristics variations in relation to climate and cork harvesting. Eur J For Res 127:33–41. https://doi.org/10.1007/s10342-007-0180-8

    Article  Google Scholar 

  13. Silva SP, Sabino MA, Fernandes EM et al (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365. https://doi.org/10.1179/174328005X41168

    Article  Google Scholar 

  14. Şen A, Quilhó T, Pereira H (2011) The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Ind Crop Prod 34:929–936. https://doi.org/10.1016/j.indcrop.2011.02.015

    Article  Google Scholar 

  15. Chanut J, Wang Y, Dal Cin I et al (2022) Surface properties of cork: is cork a hydrophobic material? J Colloid Interface Sci 608:416–423. https://doi.org/10.1016/j.jcis.2021.09.140

    Article  Google Scholar 

  16. Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218. https://doi.org/10.1007/BF00386015

    Article  Google Scholar 

  17. Pintor AMA, Ferreira CIA, Pereira JC et al (2012) Use of cork powder and granules for the adsorption of pollutants: a review. Water Res 46:3152–3166. https://doi.org/10.1016/j.watres.2012.03.048

    Article  Google Scholar 

  18. (1981) The structure and mechanics of cork. Proc R Soc Lond A Math Phys Sci 377:99–117. https://doi.org/10.1098/rspa.1981.0117

  19. Pereira H, Emília Rosa M, Fortes MA (1987) The cellular structure of cork from Quercus suber L. IAWA J 8:213–218. https://doi.org/10.1163/22941932-90001048

    Article  Google Scholar 

  20. Crouvisier-Urion K, Chanut J, Lagorce A et al (2019) Four hundred years of cork imaging: New advances in the characterization of the cork structure. Sci Rep 9:19682. https://doi.org/10.1038/s41598-019-55193-9

    Article  Google Scholar 

  21. Gil L (2009) Cork composites: a review. Materials 2:776–789. https://doi.org/10.3390/ma2030776

    Article  Google Scholar 

  22. Soares B, Reis L, Sousa L (2011) Cork composites and their role in sustainable development. Proc Eng 10:3214–3219. https://doi.org/10.1016/j.proeng.2011.04.531

    Article  Google Scholar 

  23. Gil L (2015) New cork-based materials and applications. Materials 8:625–637. https://doi.org/10.3390/ma8020625

    Article  Google Scholar 

  24. Castro O, Silva JM, Devezas T et al (2010) Cork agglomerates as an ideal core material in lightweight structures. Mater Des 31:425–432. https://doi.org/10.1016/j.matdes.2009.05.039

    Article  Google Scholar 

  25. Gürgen S, Fernandes FAO, de Sousa RJA, Kuşhan MC (2021) Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fluid. Appl Compos Mater 28:165–179. https://doi.org/10.1007/s10443-020-09859-7

    Article  Google Scholar 

  26. Silva JM, Devezas TC, Silva A et al (2010) Exploring the use of cork based composites for aerospace applications. Mater Sci Forum 636–637:260–265. https://doi.org/10.4028/www.scientific.net/MSF.636-637.260

    Article  Google Scholar 

  27. Gul J, Saleemi AR, Mirza S et al (2010) Thermal and mechanical characteristics of cork filled insulation for aerospace applications. Plastics Rubber Composit 39:28–32. https://doi.org/10.1179/174328910X12608851832010

    Article  Google Scholar 

  28. Santos Silva J, Dias Rodrigues J, Moreira RAS (2010) Application of cork compounds in sandwich structures for vibration damping. J Sandw Struct Mater 12:495–515. https://doi.org/10.1177/1099636209104538

    Article  Google Scholar 

  29. Caniato M, Orfeo S, Kaspar J, Di Monte R (2013) Green cork-based innovative resilient and insulating materials: acoustic, thermal, and mechanical characterization. J Acoust Soc Am 133:3453–3453. https://doi.org/10.1121/1.4806128

    Article  Google Scholar 

  30. Paulino M, Teixeira-Dias F (2011) An energy absorption performance index for cellular materials – development of a side-impact cork padding. Int J Crashworth 16:135–153. https://doi.org/10.1080/13588265.2010.536688

    Article  Google Scholar 

  31. Tay YY, Lim CS, Lankarani HM (2014) A finite element analysis of high-energy absorption cellular materials in enhancing passive safety of road vehicles in side-impact accidents. Int J Crashworth 19:288–300. https://doi.org/10.1080/13588265.2014.893789

    Article  Google Scholar 

  32. Alcântara I, Teixeira-Dias F, Paulino M (2013) Cork composites for the absorption of impact energy. Compos Struct 95:16–27. https://doi.org/10.1016/j.compstruct.2012.07.015

    Article  Google Scholar 

  33. Walsh J, Kim H-I, Suhr J (2017) Low velocity impact resistance and energy absorption of environmentally friendly expanded cork core-carbon fiber sandwich composites. Compos Part A Appl Sci Manuf 101:290–296. https://doi.org/10.1016/j.compositesa.2017.05.026

    Article  Google Scholar 

  34. Miralbes R, Ranz D, Ivens J, Gomez JA (2021) Characterization of cork and cork agglomerates under compressive loads by means of energy absorption diagrams. Eur J Wood Wood Product 79:719–731. https://doi.org/10.1007/s00107-020-01625-7

    Article  Google Scholar 

  35. Ferreira Serra G, Fernandes FAO, Alves de Sousa JR et al (2022) New hybrid cork-STF (Shear thickening fluid) polymeric composites to enhance head safety in micro-mobility accidents. Compos Struct 301:116138. https://doi.org/10.1016/j.compstruct.2022.116138

    Article  Google Scholar 

  36. Le Barbenchon L, Girardot J, Kopp J-B, Viot P (2019) Multi-scale foam : 3D structure/compressive behaviour relationship of agglomerated cork. Materialia (Oxf) 5:100219. https://doi.org/10.1016/j.mtla.2019.100219

    Article  Google Scholar 

  37. Paulino M, Dias FT, Gameiro CP, Cirne J (2009) Hyperelastic and dynamical behaviour of cork and its performance in energy absorption devices and crashworthiness applications. Int J Mater Eng Innov 1:197. https://doi.org/10.1504/IJMATEI.2009.029364

    Article  Google Scholar 

  38. Coelho RM, Alves de Sousa RJ, Fernandes FAO, Teixeira-Dias F (2013) New composite liners for energy absorption purposes. Mater Des 43:384–392. https://doi.org/10.1016/j.matdes.2012.07.020

    Article  Google Scholar 

  39. Kaczynski P, Ptak M, Wilhelm J et al (2019) High-energy impact testing of agglomerated cork at extremely low and high temperatures. Int J Impact Eng 126:109–116. https://doi.org/10.1016/j.ijimpeng.2018.12.001

    Article  Google Scholar 

  40. Sanchez-Saez S, García-Castillo SK, Barbero E, Cirne J (2015) Dynamic crushing behaviour of agglomerated cork. Mater Des 1980–2015(65):743–748. https://doi.org/10.1016/j.matdes.2014.09.054

    Article  Google Scholar 

  41. Sanchez-Saez S, Barbero E, Garcia-Castillo SK et al (2015) Experimental response of agglomerated cork under multi-impact loads. Mater Lett 160:327–330. https://doi.org/10.1016/j.matlet.2015.08.012

    Article  Google Scholar 

  42. Gameiro CP, Cirne J (2007) Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler. Int J Mech Sci 49:1029–1037. https://doi.org/10.1016/j.ijmecsci.2007.01.004

    Article  Google Scholar 

  43. Sousa-Martins J, Kakogiannis D, Coghe F et al (2013) Behaviour of sandwich structures with cork compound cores subjected to blast waves. Eng Struct 46:140–146. https://doi.org/10.1016/j.engstruct.2012.07.030

    Article  Google Scholar 

  44. Barbenchon LL, Viot P, Girardot J, Kopp J-B (2022) Energy absorption capacity of agglomerated cork under severe loading conditions. J Dyn Behav Mater 8:39–56. https://doi.org/10.1007/s40870-021-00316-5

    Article  Google Scholar 

  45. Sheikhi MR, Gürgen S (2022) Deceleration behavior of multi-layer cork composites intercalated with a non-Newtonian material. Arch Civil Mech Eng 23:2. https://doi.org/10.1007/s43452-022-00544-z

    Article  Google Scholar 

  46. Sheikhi MR, Gürgen S, Altuntas O (2022) Energy-absorbing and eco-friendly perspectives for cork and WKSF based composites under drop-weight impact machine. Machines 10:1050. https://doi.org/10.3390/machines10111050

    Article  Google Scholar 

  47. Sheikhi MR, Gürgen S (2022) Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos Struct 279:114797. https://doi.org/10.1016/j.compstruct.2021.114797

    Article  Google Scholar 

  48. Sanchez-Saez S, Barbero E, Cirne J (2011) Experimental study of agglomerated-cork-cored structures subjected to ballistic impacts. Mater Lett 65:2152–2154. https://doi.org/10.1016/j.matlet.2011.04.083

    Article  Google Scholar 

  49. Fernandes FAO, Jardin RT, Pereira AB, Alves de Sousa RJ (2015) Comparing the mechanical performance of synthetic and natural cellular materials. Mater Des 82:335–341. https://doi.org/10.1016/j.matdes.2015.06.004

    Article  Google Scholar 

  50. Fernandes F, Alves de Sousa R, Ptak M, Migueis G (2019) Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci 9:735. https://doi.org/10.3390/app9040735

    Article  Google Scholar 

  51. Ivañez I, Sánchez-Saez S, Garcia-Castillo SK et al (2020) High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core. Compos Struct 248:112520. https://doi.org/10.1016/j.compstruct.2020.112520

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Amorim Cork Composites for generously providing the cork composites for our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rauf Sheikhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhi, M.R., Xie, Z., Li, J. (2024). Cork-Based Structures in Energy Absorption Applications. In: Gürgen, S. (eds) Cork-Based Materials in Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-51564-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51564-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51563-7

  • Online ISBN: 978-3-031-51564-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics