Skip to main content

Extending Educational Games Across Product Lines

  • Conference paper
  • First Online:
Videogame Sciences and Arts (VJ 2023)

Abstract

Some students with limited class time have lost their all interest in what is being taught. This may be a result of the current teaching method, which is heavily centered on the instructor and slides. Keeping this in mind, a large number of researchers are implementing new teaching strategies that emphasize active techniques, such as task-based learning, videos, and games. The majority of educational games are built from previously established games, either by expiry or modification, which is referred to as Software Reuse (SR). Software Product Line is one of the primary areas of SR, and it is a technique that seeks to bring together systems that have a particular set of comparable functionality, such as a series of similar games. Considering this, the purpose of this research is to develop a product line of educational games in order to simplify game production in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonwell, C.C., Eison, J.A.: Active learning: creating excitement in the classroom. ASHE-ERIC Higher Education Report No. 1. The George Washington University, School of Education and Human Development, Washington, D.C. (1991)

    Google Scholar 

  2. Larmer, J., Mergendoller, J.R., Boss, S.: Setting the Standard for Project Based Learning: A Proven Approach to Rigorous Classroom Instruction. Association for Supervision and Curriculum Development (ASCD) (2015)

    Google Scholar 

  3. Bergmann, J., Sams, A.: Flip Your Classroom: Reach Every Student in Every Class Every Day. International Society for Technology in Education (2012)

    Google Scholar 

  4. Freeman, S., et al.: Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. 111(23), 8410–8415 (2014)

    Article  Google Scholar 

  5. Pivec, M., Dziabenko, O., Schinnerl, I.: Aspects of game-based learning. In: 3rd International Conference on Knowledge Management, Graz, Austria, vol. 304 (2003)

    Google Scholar 

  6. Gee, J.P.: What video games have to teach us about learning and literacy. Comput. Entertainment 1(1), 20–20 (2003)

    Article  Google Scholar 

  7. Prensky, M.: The Digital Game-Based Learning Revolution, ch. 1. McGraw-Hill (2001). http://www.marcprensky.com/writing/Prensky

  8. Kalmpourtzis, G.: Educational Game Design Fundamentals: Journey to Creating Intrinsically Motivating Learning Experiences. CRC Press (2019)

    Google Scholar 

  9. Boyle, E.A., et al: An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Comput. Educ. 94, 178–192 (2016). https://www.sciencedirect.com/science/article/pii/S0360131515300750

  10. Bellotti, F., Kapralos, B., Lee, K., Moreno-Ger, P., Berta, R.: Assessment in and of serious games: an overview. Adv. Hum. comput. Interact. 2013, 1–1 (2013)

    Article  Google Scholar 

  11. Jenkins, H., Squire, K., Tan, P.: You can’t bring that game to school! Designing supercharged. Design Res. 244–252 (2004)

    Google Scholar 

  12. González García, C., Núñez-Valdez, E.R., Moreno-Ger, P., González Crespo, R., Pelayo G-Bustelo, B.C., Cueva Lovelle, J.M.: Agile development of multiplatform educational video games using a domain-specific language. Univ. Access Inf. Soc. 18(3), 599–614 (2019)

    Google Scholar 

  13. Abbott, D.: Modding tabletop games for education. In: Gentile, M., Allegra, M., Söbke, H. (eds.) GALA 2018. LNCS, vol. 11385, pp. 318–329. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11548-7_30

    Chapter  Google Scholar 

  14. Ncube, C., Oberndorf, P., Kark, A.W.: Opportunistic software systems development: making systems from what’s available. IEEE Softw. 25(6), 38–41 (2008)

    Article  Google Scholar 

  15. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)

    Article  Google Scholar 

  16. Meftah, C., Retbi, A., Bennani, S., Idrissi, M.K.: Mobile serious game design using user experience: modeling of software product line variability. Int. J. Emerg. Technol. Learn. 14(23), 55–66 (2019). https://online-journals.org/index.php/i-jet/article/view/10899

  17. Garcia, L.A., OliveiraJr, E., Morandini, M.: Tailoring the scrum framework for software development: literature mapping and feature-based support. Inf. Softw. Technol. 146, 106814 (2022)

    Article  Google Scholar 

  18. Furtado, A.W., Santos, A.L., Ramalho, G.L., de Almeida, E.S.: Improving digital game development with software product lines. IEEE Softw. 28(5), 30–37 (2011)

    Article  Google Scholar 

  19. Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body of Knowledge SWEBOK, 3rd ed. IEEE Computer Society (2014)

    Google Scholar 

  20. Washizaki, H.: Building software process line architectures from bottom up. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 415–421. Springer, Heidelberg (2006). https://doi.org/10.1007/11767718_37

    Chapter  Google Scholar 

  21. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals. MIT Press (2004)

    Google Scholar 

  22. Xexéo, G., et al.: What are Games: An Introduction to Ludes Object of Study. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil (2017). (In Portuguese)

    Google Scholar 

  23. Huizinga, J.: Homo Ludens: A Study of the Play-Element in Culture. Routlegde (1999)

    Google Scholar 

  24. Costikyan, G.: Uncertainty in Games. MIT Press (2013)

    Google Scholar 

  25. Juul, J.: Half-real: Video Games Between Real Rules and Fictional Worlds. MIT Press (2005)

    Google Scholar 

  26. Brown, D.: Games and the Magic Circle, pp. 1–4. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08234-9_32-1

  27. Flanagan, M., Nissenbaum, H.: Values at Play in Digital Games. MIT Press (2014)

    Google Scholar 

  28. Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design. New Riders (2012)

    Google Scholar 

  29. Bau, D.: Droplet, a blocks-based editor for text code. J. Comput. Sci. Coll. 30(6), 138–144 (2015)

    Google Scholar 

  30. Unger, A.: Modding as part of game culture. In: Fromme, J., Unger, A. (eds.) Computer Games and New Media Cultures, pp. 509–523. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-2777-9_32

  31. Moreira, R.A.F., Assunção, W.K., Martinez, J., Figueiredo, E.: Open-source software product line extraction processes: the ArgoUML-SPL and phaser cases. Empir. Softw. Eng. 27(4), 85 (2022)

    Article  Google Scholar 

  32. LeBlanc, M., Hunicke, R., Zubek, R.: A formal approach to game design and game research. In: Proceedings of the AAAI-04 Workshop on Challenges in Game AI, pp. 1–5 (2004)

    Google Scholar 

  33. Arnab, S., et al.: Mapping learning and game mechanics for serious games analysis. Br. J. Edu. Technol. 46(2), 391–411 (2015)

    Article  MathSciNet  Google Scholar 

  34. Boller, S., Kapp, K.: Play to Learn: Everything You Need to Know About Designing Effective Learning Games. Association for talent development (2017)

    Google Scholar 

  35. de Araujo, G.G., da Silva Aranha, E.H.: Formative assessment of skills and abilities: instrumentation for digital games. RENOTE, vol. 11, no. 3, (2013). (In Portuguese)

    Google Scholar 

  36. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Addison Wesley Longman Inc., New York (2001)

    Google Scholar 

  37. Ahmad, T., Hussin, A.A.: Application of the bloom’s taxonomy in online instructional games. Int. J. Acad. Res. Bus. Soc. Sci. 7(4), 1009–1020 (2017)

    Google Scholar 

  38. Louchart, S., Lim, T., Westera, W.: In persuit of a ‘serious games mechanics’ a theoretical framework to analyse relationships between ‘game’ and. Procedia Comput. Sci. 15, 314–315 (2012)

    Article  Google Scholar 

  39. Diepreye, F.F., Odukoya, J.A.: The impact of passive and active teaching methods on students’ learning among secondary school students in Yenagoa, Bayelsa state. In: Journal of Physics: Conference Series, vol. 1378, no. 2, p. 022099. IOP Publishing (2019)

    Google Scholar 

  40. Baker, A., Navarro, E.O., Van Der Hoek, A.: An experimental card game for teaching software engineering processes. J. Syst. Softw. 75(1–2), 3–16 (2005)

    Article  Google Scholar 

  41. Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects. Routledge (2009)

    Google Scholar 

  42. Wang, L.-H., Chen, B., Hwang, G.-J., Guan, J.-Q., Wang, Y.-Q.: Effects of digital game-based stem education on students’ learning achievement: a meta-analysis. Int. J. Stem Educ. 9(1), 1–13 (2022)

    Article  Google Scholar 

  43. Dicheva, D., Dichev, C., Agre, G., Angelova, G.: Gamification in education: a systematic mapping study. J. Educ. Technol. Soc. 18(3), 75–88 (2015)

    Google Scholar 

  44. Udeozor, C., Toyoda, R., Russo Abegão, F., Glassey, J.: Digital games in engineering education: systematic review and future trends. Eur. J. Eng. Educ. 48(2), 321–339 (2023)

    Article  Google Scholar 

  45. Neto, B., Fernandes, L., Werner, C., de Souza, J.M.: Reuse in digital game development. In: Proceedings of the 4th International Conference on Ubiquitous Information Technologies & Applications, pp. 1–6. IEEE (2009)

    Google Scholar 

  46. Furtado, A.W., Santos, A.L.: Using domain-specific modeling towards computer games development industrialization. In: The 6th OOPSLA Workshop on Domain-Specific Modeling (DSM06) (2006)

    Google Scholar 

  47. Chimalakonda, S., Nori, K.V.: A family of software product lines in educational technologies. Computing 102(8), 1765–1792 (2020)

    Article  Google Scholar 

  48. Silva, J.X., Lopes, M., Avelino, G., Santos, P.: Low-code and no-code technologies adoption: a gray literature review. In: Proceedings of the XIX Brazilian Symposium on Information Systems, pp. 388–395 (2023)

    Google Scholar 

  49. Trasobares, J.I., Domingo, Á., Arcega, L., Cetina, C.: Evaluating the benefits of software product lines in game software engineering. In: Proceedings of the 26th ACM International Systems and Software Product Line Conference-Volume A, pp. 120–130 (2022)

    Google Scholar 

  50. Gouws, L.A., Bradshaw, K., Wentworth, P.: Computational thinking in educational activities: an evaluation of the educational game light-bot. In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education, pp. 10–15 (2013)

    Google Scholar 

  51. Kang, K.C.: FODA: Twenty years of perspective on feature models. SPLC (2009)

    Google Scholar 

  52. Rospigliosi, Pa.: Metaverse or simulacra? roblox, minecraft, meta and the turn to virtual reality for education, socialisation and work. Interact. Learn. Environ. 30, 1–3 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castro, D., Werner, C., Xexéo, G. (2024). Extending Educational Games Across Product Lines. In: Vale Costa, L., et al. Videogame Sciences and Arts. VJ 2023. Communications in Computer and Information Science, vol 1984. Springer, Cham. https://doi.org/10.1007/978-3-031-51452-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51452-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51451-7

  • Online ISBN: 978-3-031-51452-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics