Skip to main content

Probiotics and Delivery System

  • Chapter
  • First Online:
Microbial Biotechnology in the Food Industry

Abstract

Probiotic bacteria contribute to the healthy balance of microorganisms in the intestines. As an alternate approach to healthcare management, probiotics are gaining popularity and have proven their therapeutic efficacy in a wide range of diseases from simple to complex. There are two main advantages of being a living organism: its diverse mechanism of action and its living nature. Although this new therapeutic area has several advantages, it also has several drawbacks. Understanding the mechanisms of action of probiotic strains in particular diseases is receiving a lot of attention as a result of their identification, characterization, screening, and characterization. Probiotic delivery focuses primarily on maintaining bacteria viability during the production and storage of products. In order to ensure the vitality of sensitive probiotics under multiple harsh conditions, many approaches have been explored and are still being investigated including microencapsulation, rising food-grade delivery systems, and the use of biocompatible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajlouni, S., Ranadheera, C. S., & Chua, E. L. (2021). Encapsulation increases the in vitro bioaccessibility of probiotics in yoghurt. International Journal of Dairy Technology, 74(1), 118–127.

    Article  CAS  Google Scholar 

  • Almeida, I. F., Fernandes, A. R., Fernandes, L., Pena Ferreira, M. R., Costa, P. C., & Bahia, M. F. (2008). Moisturizing effect of oleogel/hydrogel mixtures. Pharmaceutical Development and Technology, 13(6), 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Ashoori, Y., Mohkam, M., Heidari, R., Abootalebi, S. N., Mousavi, S. M., Hashemi, S. A., ... & Gholami, A. (2020). Development and in vivo characterization of probiotic lysate-treated chitosan nanogel as a novel biocompatible formulation for wound healing. BioMed Research International, 1–9.

    Google Scholar 

  • Baral, K. C., Bajracharya, R., Lee, S. H., & Han, H. K. (2021). Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. International Journal of Nanomedicine, 16, 7535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera, B., Sagiri, S. S., Singh, V. K., Pal, K., & Anis, A. (2014). Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch-Stärke, 66(9–10), 865–879.

    Article  CAS  Google Scholar 

  • Bollom, M. A., Clark, S., & Acevedo, N. C. (2021). Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. Food Bioscience, 39, 100813.

    Article  CAS  Google Scholar 

  • Cammarota, G., Masucci, L., Ianiro, G., Bibbò, S., Dinoi, G., Costamagna, G., et al. (2015). Randomised clinical trial: Faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Alimentary Pharmacology & Therapeutics, 41(9), 835–843.

    Article  CAS  Google Scholar 

  • Campos, A. I. P., & Mena, A. L. (2012). Lactobacillus: Classification, uses and health implications. Nova Science Publishing.

    Google Scholar 

  • da Silva, M. N., Tagliapietra, B. L., & dos Santos Richards, N. S. P. (2021). Encapsulation, storage viability, and consumer acceptance of probiotic butter. LWT, 139, 110536.

    Article  Google Scholar 

  • Dos Reis, S. A., da Conceição, L. L., Siqueira, N. P., Rosa, D. D., da Silva, L. L., & Maria do Carmo, G. P. (2017). Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutrition Research, 37, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Duman, D., & Karadag, A. (2021). Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: Characterisation and assessment of viability during storage and simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(2), 927–935.

    Article  Google Scholar 

  • Ebrahimnezhad, P., Khavarpour, M., & Khalili, S. (2017). Survival of lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. International Journal of Engineering, 30(4), 456–463.

    Google Scholar 

  • Ermis, E. (2022). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 40(11), 2199–2216.

    Article  Google Scholar 

  • Gao, Y., Wang, X., Xue, C., & Wei, Z. (2021). Latest developments in food-grade delivery systems for probiotics: A systematic review. Critical Reviews in Food Science and Nutrition, 1–18.

    Google Scholar 

  • García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40–63.

    Article  PubMed  Google Scholar 

  • Gasbarrini, G., Bonvicini, F., & Gramenzi, A. (2016). Probiotics history. Journal of Clinical Gastroenterology, 50, S116–S119.

    Article  CAS  PubMed  Google Scholar 

  • Georgieva, M., Andonova, L., Peikova, L., & Zlatkov, A. (2014). Probiotics – Health benefits, classification, quality assurance and quality control – Review. Pharmacia, 61(4), 22–31.

    Google Scholar 

  • Giannakou, K., Cotterrell, M., & Delneri, D. (2020). Genomic adaptation of Saccharomyces species to industrial environments. Frontiers in Genetics, 11, 916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43.

    Article  CAS  PubMed  Google Scholar 

  • GS, B., & AJ, K. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 44(5), 854–859.

    Google Scholar 

  • He, C., Sampers, I., Van de Walle, D., Dewettinck, K., & Raes, K. (2021). Encapsulation of Lactobacillus in low-methoxyl pectin-based microcapsules stimulates biofilm formation: Enhanced resistances to heat shock and simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry, 69(22), 6281–6290.

    Article  CAS  PubMed  Google Scholar 

  • Iravani, S., Korbekandi, H., & Mirmohammadi, S. V. (2014). Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology, 52(8), 4679–4696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, S., Zhou, K., Pan, R., Wei, J., Liu, Z., & Xu, Y. (2020). Oral immunization of carps with chitosan–alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection. Fish & Shellfish Immunology, 105, 327–329.

    Article  CAS  Google Scholar 

  • Kant, R., Blom, J., Palva, A., Siezen, R. J., & de Vos, W. M. (2011). Comparative genomics of Lactobacillus. Microbial Biotechnology, 4(3), 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, I. P., Chopra, K., & Saini, A. (2002). Probiotics: Potential pharmaceutical applications. European Journal of Pharmaceutical Sciences, 15(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Kneifel, W., & Salminen, S. (Eds.). (2010). Probiotics and health claims. Wiley.

    Google Scholar 

  • Kumar, A., Gulati, M., Singh, S. K., Gowthamarajan, K., Prashar, R., Mankotia, D., et al. (2020). Effect of co-administration of probiotics with guar gum, pectin and eudragit S100 based colon targeted mini tablets containing 5-Fluorouracil for site specific release. Journal of Drug Delivery Science and Technology, 60, 102004.

    Article  CAS  Google Scholar 

  • Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT, 151, 112106.

    Article  Google Scholar 

  • McFarland, L. V. (2015). From yaks to yogurt: The history, development, and current use of probiotics. Clinical Infectious Diseases, 60(Suppl 2), S85–S90.

    Article  CAS  PubMed  Google Scholar 

  • Mercenier, A., Pavan, S., & Pot, B. (2003). Probiotics as biotherapeutic agents: Present knowledge and future prospects. Current Pharmaceutical Design, 9(2), 175–191.

    Article  CAS  PubMed  Google Scholar 

  • Milani, C., Turroni, F., Duranti, S., Lugli, G. A., Mancabelli, L., Ferrario, C., et al. (2016). Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Applied and Environmental Microbiology, 82(4), 980–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nooshkam, M., & Varidi, M. (2020). Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: A review. Food Hydrocolloids, 100, 105389.

    Article  CAS  Google Scholar 

  • Patarroyo, J. L., Fonseca, E., Cifuentes, J., Salcedo, F., Cruz, J. C., & Reyes, L. H. (2021). Gelatin-graphene oxide nanocomposite hydrogels for kluyveromyces lactis encapsulation: Potential applications in probiotics and bioreactor packings. Biomolecules, 11(7), 922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preidis, G. A., Weizman, A. V., Kashyap, P. C., & Morgan, R. L. (2020). AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology, 159(2), 708–738.

    Article  PubMed  Google Scholar 

  • Singh, P., Medronho, B., Miguel, M. G., & Esquena, J. (2018). On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions. Food Hydrocolloids, 75, 41–50.

    Article  CAS  Google Scholar 

  • Åšliżewska, K., Markowiak-Kopeć, P., & Åšliżewska, W. (2020). The role of probiotics in cancer prevention. Cancers, 13(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaishanavi, S., & Preetha, R. (2021). Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization. Materials Today: Proceedings, 40, S148–S153.

    Google Scholar 

  • Vandenplas, Y., De Greef, E., Hauser, B., Devreker, T., & Veereman-Wauters, G. (2013). Probiotics and prebiotics in pediatric diarrheal disorders. Expert Opinion on Pharmacotherapy, 14(4), 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Vinderola, G., Ouwehand, A., Salminen, S., & von Wright, A. (Eds.). (2019). Lactic acid bacteria: Microbiological and functional aspects. CRC Press.

    Google Scholar 

  • Vishali, D. A., Monisha, J., Sivakamasundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2019). Spray freeze drying: Emerging applications in drug delivery. Journal of Controlled Release, 300, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Wendel, U. (2021). Assessing viability and stress tolerance of probiotics – A review. Frontiers in Microbiology, 12.

    Google Scholar 

  • Yadav, N. R., Bhitre, M. J., & Ansari, I. K. (2013). Probiotic delivery systems: Applications, challenges and prospective. International Journal of Pharmaceutics, 4, 1–9.

    Google Scholar 

  • Yoha, K. S., Anukiruthika, T., Anila, W., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. LWT, 146, 111461.

    Article  CAS  Google Scholar 

  • Yuan, L., Wei, H., Yang, X. Y., Geng, W., Peterson, B. W., van der Mei, H. C., & Busscher, H. J. (2021). Escherichia coli colonization of intestinal epithelial layers in vitro in the presence of encapsulated Bifidobacterium breve for its protection against gastrointestinal fluids and antibiotics. ACS Applied Materials & Interfaces, 13(14), 15973–15982.

    Article  CAS  Google Scholar 

  • Zhang, W., Sadeghi, A., Karaca, A. C., Zhang, J., & Jafari, S. M. (2023). Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Critical Reviews in Food Science and Nutrition, 1–21.

    Google Scholar 

  • Zhao, W., Wei, Z., & Xue, C. (2022). Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition, 62(27), 7659–7676.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam A. Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, S.A., Eddin, A.S. (2024). Probiotics and Delivery System. In: Ahmad, F., Mohammad, Z.H., Ibrahim, S.A., Zaidi, S. (eds) Microbial Biotechnology in the Food Industry. Springer, Cham. https://doi.org/10.1007/978-3-031-51417-3_10

Download citation

Publish with us

Policies and ethics