Skip to main content

Particle Detection in Nanomaterial Images Based on Normalized Graph Cuts and Binary Segmentation

  • Conference paper
  • First Online:
Advances in Automation V (RusAutoCon 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1130))

Included in the following conference series:

  • 100 Accesses

Abstract

A method for detecting particles in nanomaterial images based on normalized graph sections and binary segmentation is presented in the article. The method includes the following calculations: preliminary segmentation of the image into regions using the simple linear iterative clustering method; segmentation of the obtained regions by the method of normalized cuts on graphs, binary segmentation of the image based on the automatic selection of the threshold by the image histogram. The scientific novelty of the proposed method is the calculation of the threshold for binary segmentation based on a histogram. The binary segmentation threshold is calculated iteratively. The studies were carried out on images of nanomaterials obtained using transmission electron microscopy. The accuracy was used to numerically evaluate the results of the proposed method. The method does not require prior training. Also, the method does not require large computing resources. The practical application of the method consists in further calculation of the particle size on images of nanomaterials for the analysis of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagayev, S.N., Arakelian, S.M., Kucherik, A.O., et al.: Nano-optics of thin-film laser-induced topological structures on a solid surface: fundamental phenomena and their applications. Bull. Russ. Acad. Sci. Phys. 84, 1427–1438 (2020). https://doi.org/10.3103/S1062873820120060

    Article  Google Scholar 

  2. Kutrovskaya, S., Chestnov, I., Osipov, A., et al.: Electric field assisted alignment of monoatomic carbon chains. Sci. Rep. 10, 9709 (2020). https://doi.org/10.1038/s41598-020-65356-8

    Article  Google Scholar 

  3. Kucherik, A.O., Arakelyan, S.M., Garnov, S.V., et al.: Two-stage laser-induced synthesis of linear carbon chains. Kvantovaya Elektronika 46(7), 627–633 (2016). https://doi.org/10.1070/QEL16128

    Article  Google Scholar 

  4. Ribeiro, E., Shah, M.: Computer vision for nanoscale imaging. Mach. Vis. Appl. 17, 147–162 (2006). https://doi.org/10.1007/s00138-006-0021-7

    Article  Google Scholar 

  5. Nicholson, W.V., Glaeser, R.M.: Review: automatic particle detection in electron microscopy. J. Struct. Biol. 133, 90–101 (2001). https://doi.org/10.1006/jsbi.2001.4348

    Article  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, p 976. Prentice-Hall (2007)

    Google Scholar 

  7. Mittal, H., Pandey, A.C., Saraswat, M., et al.: A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multimedia Tools Appl. 81, 35001–35026 (2022). https://doi.org/10.1007/s11042-021-10594-9

  8. Park, C., Huang, J.Z., Ji, J.X., et al.: Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35, 669–681 (2013). https://doi.org/10.1109/TPAMI.2012.163

    Article  Google Scholar 

  9. Singh, V., Marinescu, D.C., Baker, T.S.: Image segmentation for automatic particle identification in electron micrographs based on hidden Markov random field models and expectation maximization. J. Struct. Biol. 145(1–2), 123–141 (2004). https://doi.org/10.1016/j.jsb.2003.11.028

    Article  Google Scholar 

  10. Qian, Y., Huang, J.Z., Li, X., et al.: Robust nanoparticles detection from noisy background by fusing complementary image information. IEEE Trans. Image Process. 25, 5713–5726 (2016). https://doi.org/10.1109/TIP.2016.2614127

    Article  MathSciNet  Google Scholar 

  11. Kim, D., Choi, J., Nam, J.: Entropy-assisted image segmentation for nano- and micro-sized networks. J. Microsc. 262(3), 274–294 (2016). https://doi.org/10.1111/jmi.12362

    Article  Google Scholar 

  12. Mallick, S.P., Xu, Y., Kriegman, D.J.: Detecting particles in Cryo-EM micrographs using learned features. J. Struct. Biol. 145(1–2), 52–62 (2004). https://doi.org/10.1016/j.jsb.2003.11.005

    Article  Google Scholar 

  13. Yu, Z., Bajaj, C.: Detecting circular and rectangular particles based on geometric feature detection in electron micrographs. J. Struct. Biol. 145(1–2), 168–180 (2004). https://doi.org/10.1016/j.jsb.2003.10.027

    Article  Google Scholar 

  14. Wei, Y., Chen, H., Wang, H., et al.: Detection of nano-particles based on machine vision. In: Proceedings of the 2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 189–192 (2019). https://doi.org/10.1109/3M-NANO46308.2019.8947355

  15. Zhu, Y., Carragher, B., Mouche, F., et al.: Automatic particledetection through efficient Hough transforms. IEEE Trans. Med. Imaging 22(9), 1053–1062 (2003). https://doi.org/10.1109/TMI.2003.816947

    Article  Google Scholar 

  16. Park, C., Huang, J.Z., Huitink, D., et al.: A multistage, semi-automated procedure for analyzing the morphology of nanoparticles. IIE Trans. 44, 507–522 (2012). https://doi.org/10.1080/0740817X.2011.587867

    Article  Google Scholar 

  17. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Opt. Eng. 34, 433–481 (1992). https://doi.org/10.1201/9781482277234-12

    Article  Google Scholar 

  18. Ogura, T., Sato, C.: An automatic particle pickup method using a neural network applicable to low-contrast electron micrographs. J. Struct. Biol. 136(3), 227–238 (2001). https://doi.org/10.1006/jsbi.2002.4442

    Article  Google Scholar 

  19. Oktay, A.B., Gurses, A.: Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images. Micron 120, 113–119 (2019). https://doi.org/10.1016/j.micron.2019.02.009

    Article  Google Scholar 

  20. Faraz, K., Grenier, T., Ducottet, C., et al.: Deep learning detection of nanoparticles and multiple object tracking of their dynamic evolution during in situ ETEM studies. Sci. Rep. 12(1), 2484 (2022). https://doi.org/10.1038/s41598-022-06308-2

    Article  Google Scholar 

  21. Modarres, M.H., Aversa, R., Cozzini, S., et al.: Neural network for nanoscience scanning electron microscope image recognition. Sci. Rep. 7, 13282 (2017). https://doi.org/10.1038/s41598-017-13565-z

    Article  Google Scholar 

  22. Okunev, A.G., Nartova, A.V., Matveev, A.V.: Recognition of nanoparticles on scanning probe microscopy images using computer vision and deep machine learning. In: Proceedings of the International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 0940–0943 (2019). https://doi.org/10.1109/sibircon48586.2019.8958363

  23. Zhang, F., Zhang, Q., Xiao, Z., et al.: Spherical nanoparticle parameter measurement method based on mask R-CNN segmentation and edge fitting. In: Proceedings of the 8th International Conference on Computing and Pattern Recognition, pp. 205–212 (2019). https://doi.org/10.1145/3373509.3373590

  24. Liz, M.F., Nartova, A.V., Matveev, A.V., et al.: Using computer vision and deep learning for nanoparticle recognition on scanning probe microscopy images: modified U-net approach. In: Science and Artificial Intelligence Conference (2020). https://doi.org/10.1109/S.A.I.ence50533.2020.9303184

  25. Zakharov, A., Tuzhilkin, A., Zhiznyakov, A.: Automatic building detection from satellite images using spectral graph theory. In: International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), IEEE, Tomsk, Russia (2016). https://doi.org/10.1109/MEACS.2015.7414937

  26. Zakharov, A.A., Titov, D.V., Zhiznyakov, A.L., et al.: Visual attention method based on vertex ranking of graphs by heterogeneous image attributes. Comput. Opt. 44(3), 427–435 (2020). https://doi.org/10.18287/2412-6179-CO-658

    Article  Google Scholar 

  27. Zakharov, A., Barinov, A., Zhiznyakov, A.: Selection of Faces in Images Using the Spectral Graph Theory and Constraints. In: 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), IEEE, St. Petersburg, Russia (2017). https://doi.org/10.1109/ICIEAM.2017.8076407

  28. Otsu, N.: A threshold selection method from gray-level histograms. Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  29. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012). https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  30. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

Download references

Acknowledgments

The research was carried out within the state assignment in the field of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (theme FZUN-2020-0013, state assignment of VlSU). The study was carried out using the equipment of the interregional multispecialty and interdisciplinary center for the collective usage of promising and competitive technologies in the areas of development and application in industry/mechanical engineering of domestic achievements in the field of nanotechnology (Agreement No. 075-15-2021-692 of August 5, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakharov, A.A., Zakharova, M.V., Zhiznyakov, A.L. (2024). Particle Detection in Nanomaterial Images Based on Normalized Graph Cuts and Binary Segmentation. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation V. RusAutoCon 2023. Lecture Notes in Electrical Engineering, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-031-51127-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51127-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51126-4

  • Online ISBN: 978-3-031-51127-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics