Skip to main content

Time Correlations and Their Descriptions of Materials Properties

  • Chapter
  • First Online:
Heat Carriers in Liquids: An Introduction

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 114 Accesses

Abstract

Time correlation functions of dynamical variables have been used ubiquitously to characterize various materials properties. In this chapter, we begin by discussing some general properties of time correlation functions, followed by characterizing thermal conductivity and viscosity using heat current and stress correlations, respectively, as some examples. We then move onto velocity autocorrelation functions that characterize atomic degrees of freedom, similar to normal modes presented in Chap. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubo, R.: The fluctuation-dissipation theorem. Rep. Progress Phys. 29(1), 255 (1966). https://doi.org/10.1088/0034-4885/29/1/306. Accessed 21 Oct 2023

  2. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)

    Article  ADS  Google Scholar 

  3. Sellan, D.P., Landry, E.S., Turney, J.E., McGaughey, A.J.H., Amon, C.H.: Size effects in molecular dynamics thermal conductivity predictions. Phys. Rev. B 81(21) (2010). https://doi.org/10.1103/PhysRevB.81.214305. Accessed 25 Nov 2015

  4. Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38(14), 9902 (1988)

    Article  ADS  Google Scholar 

  5. Lv, W., Henry, A.: Direct calculation of modal contributions to thermal conductivity via Green-Kubo modal analysis. J. Phys. 18(1), 013028 (2016). https://doi.org/10.1088/1367-2630/18/1/013028. Accessed 17 May 2016

  6. Moon, J., Minnich, A.J.: Sub-amorphous thermal conductivity in amorphous heterogeneous nanocomposites. RSC Adv. 6(107), 105154–105160 (2016). https://doi.org/10.1039/C6RA24053D

    Article  ADS  Google Scholar 

  7. Moon, J., Latour, B., Minnich, A.J.: Propagating elastic vibrations dominate thermal conduction in amorphous silicon. Phys. Rev. B 97(2) (2018). https://doi.org/10.1103/PhysRevB.97.024201

  8. Sosso, G.C., Deringer, V.L., Elliott, S.R., Csányi, G.: Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Mol. Simul. 44(11), 866–880 (2018). https://doi.org/10.1080/08927022.2018.1447107. Accessed 27 Oct 2018

  9. Wang, Y., Fan, Z., Qian, P., Caro, M.A., Ala-Nissila, T.: Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations. Phys. Rev. B 107(5), 054303 (2023). https://doi.org/10.1103/PhysRevB.107.054303. Publisher: American Physical Society. Accessed 21 Oct 2023

  10. Cahill, D.G., Katiyar, M., Abelson, J.R.: Thermal conductivity of a-Si: H thin films. Phys. Rev. B 50(9), 6077 (1994). Accessed 19 May 2016

    Google Scholar 

  11. Kim, T., Moon, J., Minnich, A.J.: Origin of micrometer-scale propagation lengths of heat-carrying acoustic excitations in amorphous silicon. Phys. Rev. Mat. 5(6), 065602 (2021). https://doi.org/10.1103/PhysRevMaterials.5.065602. Publisher: American Physical Society

  12. Liu, X., Feldman, J.L., Cahill, D.G., Crandall, R.S., Bernstein, N., Photiadis, D.M., Mehl, M.J., Papaconstantopoulos, D.A.: High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102(3) (2009). https://doi.org/10.1103/PhysRevLett.102.035901. Accessed 10 Dec 2015

  13. Crespo, D., Bruna, P., Valles, A., Pineda, E.: Phonon dispersion relation of metallic glasses. Phys. Rev. B 94(14) (2016). https://doi.org/10.1103/PhysRevB.94.144205. Accessed 19 Aug 2020

  14. Moon, J., Egami, T.: Structural effect on phonon attenuation in metallic liquids and glasses (2021). arXiv: 2110.10241 [cond-mat]. Accessed 10 Aug 2023

  15. He, Y., Donadio, D., Galli, G.: Heat transport in amorphous silicon: interplay between morphology and disorder. Appl. Phys. Lett. 98(14), 144101 (2011). https://doi.org/10.1063/1.3574366

    Article  ADS  Google Scholar 

  16. McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York, NY (1976)

    Google Scholar 

  17. Frenkel, J.: Continuity of the solid and the liquid states. Nature 136(3431), 167–168 (1935). https://doi.org/10.1038/136167a0. Accessed 18 July 2022

  18. Kivelson, D., Tarjus, G., Zhao, X., Kivelson, S.A.: Fitting of viscosity: distinguishing the temperature dependences predicted by various models of supercooled liquids. Phys. Rev. E 53(1), 751–758 (1996). https://doi.org/10.1103/PhysRevE.53.751. Accessed 18 Feb 2021

  19. Iwashita, T., Nicholson, D.M., Egami, T.: Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110(20), 205504 (2013). https://doi.org/10.1103/PhysRevLett.110.205504. Accessed 27 April 2019

  20. Ren, N., Hu, L., Wang, L., Guan, P.: Revealing a hidden dynamic signature of the non-Arrhenius crossover in metallic glass-forming liquids. Scripta Materialia 181, 43–47 (2020). https://doi.org/10.1016/j.scriptamat.2020.02.012. Accessed 19 Nov 2020

  21. Jaiswal, A., Egami, T., Zhang, Y.: Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering. Phys. Rev. B 91(13) (2015). https://doi.org/10.1103/PhysRevB.91.134204. Accessed 14 Feb 2020

  22. Soklaski, R., Tran, V., Nussinov, Z., Kelton, K.F., Yang, L.: A locally preferred structure characterises all dynamical regimes of a supercooled liquid. Philos. Mag. 96(12), 1212–1227 (2016). https://doi.org/10.1080/14786435.2016.1158427. Accessed 25 March 2020

  23. Van Hoesen, D., Gangopadhyay, A., Lohöfer, G., Sellers, M., Pueblo, C., Koch, S., Galenko, P., Kelton, K.: Resistivity saturation in metallic liquids above a dynamical crossover temperature observed in measurements aboard the international space station. Phys. Rev. Lett. 123(22), 226601 (2019). https://doi.org/10.1103/PhysRevLett.123.226601. Accessed 17 Feb 2020

  24. Blodgett, M.E., Egami, T., Nussinov, Z., Kelton, K.F.: Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5(1) (2015). https://doi.org/10.1038/srep13837. Accessed 17 Feb 2020

  25. Jaiswal, A., Egami, T., Kelton, K., Schweizer, K.S., Zhang, Y.: Correlation between fragility and the arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys. Rev. Lett. 117(20) (2016). https://doi.org/10.1103/PhysRevLett.117.205701. Accessed 20 March 2020

  26. Iwashita, T., Wu, B., Chen, W.-R., Tsutsui, S., Baron, A.Q.R., Egami, T.: Seeing real-space dynamics of liquid water through inelastic x-ray scattering. Sci. Adv. 3(12), 1603079 (2017). https://doi.org/10.1126/sciadv.1603079. Accessed 13 April 2018

  27. Shinohara, Y., Dmowski, W., Iwashita, T., Wu, B., Ishikawa, D., Baron, A.Q.R., Egami, T.: Viscosity and real-space molecular motion of water: Observation with inelastic x-ray scattering. Phys. Rev. E 98(2), 022604 (2018). https://doi.org/10.1103/PhysRevE.98.022604. Accessed 13 May 2019

  28. Ashcraft, R., Wang, Z., Abernathy, D.L., Quirinale, D.G., Egami, T., Kelton, K.F.: Experimental determination of the temperature-dependent Van Hove function in a Zr80Pt20 liquid. J. Chem. Phys. 152(7), 074506 (2020). https://doi.org/10.1063/1.5144256. Publisher: American Institute of Physics. Accessed 09 Feb 2021

  29. Brillo, J., Pommrich, A.I., Meyer, A.: Relation between self-diffusion and viscosity in dense liquids: new experimental results from electrostatic levitation. Phys. Rev. Lett. 107(16) (2011). https://doi.org/10.1103/PhysRevLett.107.165902. Accessed 25 May 2019

  30. Mohr, M., Wunderlich, R.K., Zweiacker, K., Prades-Rödel, S., Sauget, R., Blatter, A., Logé, R., Dommann, A., Neels, A., Johnson, W.L., Fecht, H.-J.: Surface tension and viscosity of liquid Pd43Cu27Ni10P20 measured in a levitation device under microgravity. npj Microgravity 5(1), 1–8 (2019). https://doi.org/10.1038/s41526-019-0065-4. Number: 1 Publisher: Nature Publishing Group. Accessed 14 Nov 2023

  31. Bendert, J.C., Kelton, K.F.: Containerless measurements of density and viscosity for a Cu$$_48$$Zr$$_52$$Liquid. Int. J. Thermophys. 35(9), 1677–1686 (2014). https://doi.org/10.1007/s10765-014-1664-7. Accessed 14 Nov 2023

  32. Wei, S., Evenson, Z., Stolpe, M., Lucas, P., Angell, C.A.: Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material. Sci. Adv. 4(11), 8632 (2018). https://doi.org/10.1126/sciadv.aat8632. Accessed 12 Feb 2020

  33. Costigliola, L., Heyes, D.M., Schrøder, T.B.: Revisiting the Stokes-Einstein relation without a hydrodynamic diameter. Chem. Phys. 7 (2019)

    Google Scholar 

  34. Cao, Q.-L., Wang, P.-P., Huang, D.-H.: Revisiting the Stokes-Einstein relation for glass-forming melts. Phys. Chem. Chem. Phys. 22(4), 2557–2565 (2020). https://doi.org/10.1039/C9CP04984C. Publisher: Royal Society of Chemistry. Accessed 08 Aug 2023

  35. Sengupta, S., Karmakar, S., Dasgupta, C., Sastry, S.: Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J. Chem. Phys. 138(12), 12–548 (2013). https://doi.org/10.1063/1.4792356. Accessed 11 March 2021

  36. Purcell, E.M.: Life at low Reynolds number. Amer. J. Phys. 45(1) (1977)

    Google Scholar 

  37. Trachenko, K., Brazhkin, V.V.: Minimal quantum viscosity from fundamental physical constants. Sci. Adv. 6(17), 3747 (2020). https://doi.org/10.1126/sciadv.aba3747. Publisher: American Association for the Advancement of Science Section: Research Article. Accessed 16 June 2020

  38. NIST: Thermophysical properties of fluid systems. https://webbook.nist.gov/chemistry/fluid/ Accessed 01 Aug 2023

  39. Khrapak, S.A., Khrapak, A.G.: Minima of shear viscosity and thermal conductivity coefficients of classical fluids. Phys Fluids 7 (2022)

    Google Scholar 

  40. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43(5), 461–482 (1931). https://doi.org/10.1088/0959-5309/43/5/301. Publisher: IOP Publishing. Accessed 28 July 2022

  41. Moon, J., Thébaud, S., Lindsay, L., Egami, T.: Normal mode description of phases of matter: application to heat capacity. Phys. Rev. Res. 6(1), 013206 (2024). https://doi.org/10.1103/PhysRevResearch.6.013206. Publisher: American Physical Society

  42. Kaviany, M.: Heat Transfer Physics. Cambridge University Press, New York, NY (2014)

    Book  Google Scholar 

  43. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyun Moon .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, J. (2024). Time Correlations and Their Descriptions of Materials Properties. In: Heat Carriers in Liquids: An Introduction. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-51109-7_3

Download citation

Publish with us

Policies and ethics