Skip to main content

Enhancing Air Quality Forecasting Through Deep Learning and Continuous Wavelet Transform

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

Air quality forecasting plays a crucial role in environmental management and public health. In this paper, we propose a novel approach that combines deep learning techniques with the Continuous Wavelet Transform (CWT) for air quality forecasting based on sensor data. The proposed methodology is agnostic to the target pollutant and can be applied to estimate any available pollutant without loss of generality. The pipeline consists of two main steps: the generation of stacked samples from raw sensor signals using CWT, and the prediction through a custom deep neural network based on the ResNet18 architecture.

We compare our approach with traditional one-dimensional signal processing models. The results show that our 2D pipeline, employing the Morlet mother wavelet, outperforms the baselines significantly. The localized time-frequency representations obtained through CWT highlight hidden dynamics and relationships within the parameter behavior and external factors, leading to more accurate predictions. Overall, our approach demonstrates the potential to advance air quality forecasting and environmental management for healthier living environments worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/PietroManganelliConforti/Deep-Learning-and-Wavelet-Transform-for-Air-Quality-Forecasting.

References

  1. Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Emerging applications of wavelets: a review. Phys. Commun. 3(1), 1–18 (2010). https://doi.org/10.1016/j.phycom.2009.07.001, https://linkinghub.elsevier.com/retrieve/pii/S1874490709000482

  2. Chen, Z., Wang, B., Gorban, A.N.: Multivariate Gaussian and student-t process regression for multi-output prediction. Neural Comput.Appl. 32(8), 3005–3028 (2020). https://doi.org/10.1007/s00521-019-04687-8

    Article  Google Scholar 

  3. De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G.: On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B 129(2), 750–757 (2008). https://doi.org/10.1016/j.snb.2007.09.060, https://www.sciencedirect.com/science/article/pii/S0925400507007691

  4. Gargour, C., Gabrea, M., Ramachandran, V., Lina, J.M.: A short introduction to wavelets and their applications. IEEE Circuits Syst. Mag. 9(2), 57–68 (2009). https://doi.org/10.1109/MCAS.2009.932556

    Article  Google Scholar 

  5. Huang, L., et al.: Exploring deep learning for air pollutant emission estimation. Geoscientific Model Dev. 14(7), 4641–4654 (2021). https://doi.org/10.5194/gmd-14-4641-2021, https://gmd.copernicus.org/articles/14/4641/2021/, publisher: Copernicus GmbH

  6. Krawczyk, M., Gerkmann, T.: STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 1931–1940 (2014). https://doi.org/10.1109/TASLP.2014.2354236

    Article  Google Scholar 

  7. Liu, H., Li, Q., Yu, D., Gu, Y.: Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl. Sci. 9(19), 4069 (2019). https://doi.org/10.3390/app9194069, https://www.mdpi.com/2076-3417/9/19/4069

  8. Ly, H.B., et al.: Development of an AI model to measure traffic air pollution from Multisensor and Weather data. Sensors 19(22), 4941 (2019). https://doi.org/10.3390/s19224941, https://www.mdpi.com/1424-8220/19/22/4941

  9. Ma, X., Karkus, P., Hsu, D., Lee, W.S.: Particle filter recurrent neural networks. Proc. AAAI Conf. Artif. Intell. 34(04), 5101–5108 (2020). https://doi.org/10.1609/aaai.v34i04.5952, https://ojs.aaai.org/index.php/AAAI/article/view/5952

  10. Ma, Z., Mei, G.: Deep learning for geological hazards analysis: data, models, applications, and opportunities. Earth Sci. Rev. 223, 103858 (2021). https://doi.org/10.1016/j.earscirev.2021.103858, https://www.sciencedirect.com/science/article/pii/S0012825221003597

  11. Manganelli Conforti, P., D’Acunto, M., Russo, P.: Deep learning for chondrogenic tumor classification through wavelet transform of Raman spectra. Sensors 22(19), 7492 (2022). https://doi.org/10.3390/s22197492, https://www.mdpi.com/1424-8220/22/19/7492

  12. Pan, L., Pipitsunthonsan, P., Daengngam, C., Chongcheawchamnan, M.: Identification of complex mixtures for Raman spectroscopy using a novel scheme based on a new multi-label deep neural network. IEEE Sens. J. 21(9), 10834–10843 (2020)

    Article  Google Scholar 

  13. Qi, Y., et al.: Accurate diagnosis of lung tissues for 2D Raman spectrogram by deep learning based on short-time Fourier transform. Anal. Chim. Acta 1179, 338821 (2021). https://doi.org/10.1016/j.aca.2021.338821, https://linkinghub.elsevier.com/retrieve/pii/S0003267021006474

  14. Russo, P., Schaerf, M.: Anomaly detection in railway bridges using imaging techniques. Sci. Rep. 13(1), 3916 (2023)

    Article  Google Scholar 

  15. Sabzekar, M., Hasheminejad, S.M.H.: Robust regression using support vector regressions. Chaos, Solitons Fractals 144, 110738 (2021). https://doi.org/10.1016/j.chaos.2021.110738, https://www.sciencedirect.com/science/article/pii/S0960077921000916

  16. Saleem, S., Dilawari, A., Khan, U.G.: Spoofed voice detection using dense features of STFT and MDCT spectrograms. In: 2021 International Conference on Artificial Intelligence (ICAI), pp. 56–61 (2021). https://doi.org/10.1109/ICAI52203.2021.9445259

  17. Salman, A.G., Kanigoro, B., Heryadi, Y.: Weather forecasting using deep learning techniques. In: 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 281–285 (2015). https://doi.org/10.1109/ICACSIS.2015.7415154

  18. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  19. Tary, J.B., Herrera, R.H., Van Der Baan, M.: Analysis of time-varying signals using continuous wavelet and synchrosqueezed transforms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2126), 20170254 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Manganelli Conforti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manganelli Conforti, P., Fanti, A., Nardelli, P., Russo, P. (2024). Enhancing Air Quality Forecasting Through Deep Learning and Continuous Wavelet Transform. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics