Skip to main content

A Semi-supervised Framework for Anomaly Detection and Data Labeling for Industrial Control Systems

  • Conference paper
  • First Online:
Disruptive Information Technologies for a Smart Society (ICIST 2023)

Abstract

To ensure uninterrupted service delivery in critical sectors like electricity, water, and oil, safeguarding information systems against anomalies is imperative. Detecting anomalies within Industrial Control Systems (ICSs) is vital, but it’s challenging without a comprehensive understanding of their causes. This necessitates a well-annotated dataset encompassing diverse anomaly types, often dependent on domain experts. Unfortunately, such datasets are scarce. To address this challenge, this study introduces a specialized framework for unsupervised anomaly detection and anomaly categorization within data collected from monitoring ICSs. The framework was validated using data from a Secure Water Treatment (SWaT) testbed, where multiple cyberattacks were intentionally introduced. An Isolation Forest model was utilized, achieving 77% accuracy in anomaly identification. These anomalies were then isolated from normal samples, and a K-means clustering model categorized similar attacks and labeled anomaly clusters. The most suitable supervised model for the data was determined through experimentation with various classifiers, including SVM, Random Forest, Decision Tree, KNearest Neighbor, and AdaBoost. Remarkably, K-Nearest Neighbor (KNN) outperformed all, achieving 98% accuracy. This framework automates anomaly detection, categorization and data labeling, elevating data quality and accuracy in ICS anomaly detection while reducing the need for manual expert intervention and addressing the challenge of limited well-annotated datasets and improving the overall security of vital infrastructure sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    De-chlorinator; Removes chlorine from water.

  2. 2.

    Ultra-Filtration Tank 301.

  3. 3.

    Reverse Osmosis Feet Tank.

References

  1. Al-Abassi, A., Karimipour, H., Dehghantanha, A., Parizi, R.M.: An ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

    Article  Google Scholar 

  2. Liu, X., Ding, Y., Tang, H., Xiao, F.: A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy Build. 231, 110601 (2021)

    Article  Google Scholar 

  3. Guo, P., Wang, L., Shen, J., Dong, F.: A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 26(2), 146–153 (2020)

    Google Scholar 

  4. Hawkins, D.M.:  Identification of outliers. Springer Netherlands, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4

  5. Pathan, A.K: The state of the art in intrusion prevention and detection, vol. 44. CRC Press, Boca raton (2014)

    Google Scholar 

  6. Khaledian, E., Pandey, S., Kundu, P., Srivastava, A.K.: Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop. IEEE Trans. Smart Grid 12(3), 2378–2388 (2020)

    Article  Google Scholar 

  7. Elnour, M., Meskin, N., Khan, K., Jain, R.: A dual-isolation-forests-based attack detection framework for industrial control systems. IEEE Access 8, 36639–36651 (2020)

    Article  Google Scholar 

  8. Ripan, R.C., Sarker, I.H., Musfique, M.: An isolation forest learning based outlier detection approach for effectively classifying cyber anomalies. In: Abraham, A., Hanne, T., Castillo, O.,  Gandhi, N., Tatiane Nogueira Rios, T. (ed.) HIS 2020. AISC, vol. 1375, pp. 270–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73050-5_27

  9. Guo, P., Wang, L., Shen, J., Dong, F.: A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 26(2), 146–153 (2021)

    Article  Google Scholar 

  10. Baek, S., Kwon, D., Suh, S.C., Kim, H., Kim, I., Kim, J.: Clustering-based label estimation for network anomaly detection. Digit. Commun. Netw. 7, 37–44 (2020)

    Article  Google Scholar 

  11. Zhang, Y.-L., Li, L., Zhou, J., Li, X., Zhou, Z.-H.: Anomaly detection with partially observed anomalies. In: Companion Proceedings of the The Web Conference 2018, pp. 639–646 (2018)

    Google Scholar 

  12. Baek, S., Kwon, D., Kim, J., Suh, S.C., Kim, H.,  Kim, I.: Unsupervised labeling for supervised anomaly detection in enterprise and cloud networks. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 205–210. IEEE (2017)

    Google Scholar 

  13. Mathur, A.P.,  Tippenhauer, N.O.:  Swat: a water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater), pp. 31–36. IEEE (2016)

    Google Scholar 

  14. Ahsan, M.M., Parvez Mahmud, M.A., Saha, P.K., Gupta, K.D., Siddique, Z.: Effect of data scaling methods on machine learning algorithms and model performance. Technologies 9(3), 52 (2021)

    Article  Google Scholar 

  15. Ganapathi Raju, V.N., Prasanna Lakshmi, K., Jain, V.M., Kalidindi, A., Padma, V.: Study the influence of normalization/transformation process on the accuracy of supervised classification. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 729–735. IEEE (2020)

    Google Scholar 

  16. Liu, F.T.,  Ting, K.M., Zhou, Z.H.:  Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  17. Grira, N., Crucianu, M., Boujemaa, N.: Unsupervised and semi-supervised clustering: a brief survey. Rev. Mach. Learn. Techn. Proc. Multimedia Content 1, 9–16 (2004)

    Google Scholar 

  18. Rajabi, A., Eskandari, M., Ghadi, M.J., Li, L., Zhang, J., Siano, P.: A comparative study of clustering techniques for electrical load pattern segmentation. Renew. Sustain. Energy Rev. 120, 109628 (2020)

    Google Scholar 

  19. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L. (ed.) Automated machine learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

  20.  Sebayang, F.A., Lydia, M.S.,  Nasution, B.B.: Optimization on purity k-means using variant distance measure. In: 2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), pp. 143–147 (2020)

    Google Scholar 

  21. Lucas, B.: Proximity forest: an effective and scalable distance-based classifier for time series. Data Mining Knowl. Dis. 33(3), 607–635 (2019)

    Article  Google Scholar 

  22. Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-nn classifiers. Proc. Priv. Enhancing Technol. 2021(2), 111–129 (2021)

    Article  Google Scholar 

  23. Rai, K., Syamala Devi, M., Guleria, A.: Decision tree based algorithm for intrusion detection. Inter. J. Adv. Netw. Appli. 7(4), 2828 (2016)

    Google Scholar 

  24. Javed, A.R., Jalil, Z., Moqurrab, S.A., Abbas, S., Liu, X.: Ensemble adaboost classifier for accurate and fast detection of botnet attacks in connected vehicles. Trans. Emerging Telecommun. Technol., e4088 (2020)

    Google Scholar 

  25. Maglaras, L.A.,  Jiang, J.: Intrusion detection in scada systems using machine learning techniques. In: 2014 Science and Information Conference, pp. 626–631. IEEE (2014)

    Google Scholar 

  26. Zhang, J., Xia, K., He, Z., Yin, Z., Wang, S.: Semi-supervised ensemble classifier with improved sparrow search algorithm and its application in pulmonary nodule detection. Mathematical Prob. Eng. 2021 (2021)

    Google Scholar 

  27. Syakur, M.A., Khotimah, B.K., Rochman, E.M.S.,  Satoto, B.D.: Integration k-means clustering method and elbow method for identification of the best customer profile cluster.  IOP Conf. Ser. Mater. Sci. Eng. 336,  012017 (2018)

    Google Scholar 

  28.  Shahapure, K.R.,   Nicholas, C.: Cluster quality analysis using silhouette score. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 747–748. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Salim Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmud, J.S., Birihanu, E., Lendak, I. (2024). A Semi-supervised Framework for Anomaly Detection and Data Labeling for Industrial Control Systems. In: Trajanovic, M., Filipovic, N., Zdravkovic, M. (eds) Disruptive Information Technologies for a Smart Society. ICIST 2023. Lecture Notes in Networks and Systems, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-031-50755-7_15

Download citation

Publish with us

Policies and ethics