Skip to main content

Solving Two-Player Games Under Progress Assumptions

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14499))

Abstract

This paper considers the problem of solving infinite two-player games over finite graphs under various classes of progress assumptions motivated by applications in cyber-physical system (CPS) design. Formally, we consider a game graph \(G\), a temporal specification \(\varPhi \) and a temporal assumption \(\psi \), where both \(\varPhi \) and \(\psi \) are given as linear temporal logic (LTL) formulas over the vertex set of \(G\). We call the tuple \((G,\varPhi ,\psi )\) an augmented game and interpret it in the classical way, i.e., winning the augmented game \((G,\varPhi ,\psi )\) is equivalent to winning the (standard) game \((G,\psi \Rightarrow \varPhi )\). Given a reachability or parity game \(\mathcal {G}= (G,\varPhi )\) and some progress assumption \(\psi \), this paper establishes whether solving the augmented game \(\mathfrak {G}= (G,\varPhi ,\psi )\) lies in the same complexity class as solving \(\mathcal {G}\). While the answer to this question is negative for arbitrary combinations of \(\varPhi \) and \(\psi \), a positive answer results in more efficient algorithms, in particular for large game graphs.

We therefore restrict our attention to particular classes of CPS-motivated progress assumptions and establish the worst-case time complexity of the resulting augmented games. Thereby, we pave the way towards a better understanding of assumption classes that can enable the development of efficient solution algorithms in augmented two-player games.

The randomization record is publicly available at www.aeaweb.org/journals/policies/random-author-order/search. S. P. Nayak, I. Saglam and A.-K. Schmuck are supported by the DFG projects 389792660 TRR 248-CPEC and SCHM 3541/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is because every \(\omega \)-regular specification can be reduced to a parity specification [3], which can be written as an LTL specification over V as given later.

  2. 2.

    The edges \(x_i \rightarrow x'_i\) mainly serve illustrative purposes, and the live outgoing edge of \(x'_i\) can actually be attributed directly to \(x_i\). Further, distributing live edges to separate vertices underscores the result’s validity for live edges with disjoint sources.

  3. 3.

    We note that all games can be converted to an equivalent alternating game by at most doubling the size of the vertex and edge sets of the game graph.

  4. 4.

    See [32] for a more in-depth version of this example.

References

  1. Aminof, B., Giacomo, G.D., Rubin, S.: Stochastic fairness and language-theoretic fairness in planning in nondeterministic domains. In: Beck, J.C., Buffet, O., Hoffmann, J., Karpas, E., Sohrabi, S. (eds.) Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling, Nancy, France, 26–30 October 2020, pp. 20–28. AAAI Press (2020)

    Google Scholar 

  2. Anand, A., Mallik, K., Nayak, S.P., Schmuck, A.: Computing adequately permissive assumptions for synthesis. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol. 13994, pp. 211–228. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8_15

    Chapter  Google Scholar 

  3. Apt, K.R., Grädel, E. (eds.): Lectures in Game Theory for Computer Scientists. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  4. Arnold, A., Niwiński, D., Parys, P.: A quasi-polynomial black-box algorithm for fixed point evaluation. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, 25–28 January 2021, Ljubljana, Slovenia (Virtual Conference). LIPIcs, vol. 183, pp. 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  6. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Fast symbolic algorithms for omega-regular games under strong transition fairness. TheoretiCS 2 (2023)

    Google Scholar 

  7. Belta, C., Sadraddini, S.: Formal methods for control synthesis: an optimization perspective. Annu. Rev. Control Robot. Auton. Syst. 2, 115–140 (2019)

    Article  Google Scholar 

  8. Bloem, R., et al.: Synthesizing robust systems. Acta Informatika 51(3–4), 193–220 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bloem, R., Ehlers, R., Jacobs, S., Könighofer, R.: How to handle assumptions in synthesis. In: SYNT 2014, Vienna, Austria, pp. 34–50 (2014)

    Google Scholar 

  10. Bloem, R., Ehlers, R., Könighofer, R.: Cooperative reactive synthesis. In: ATVA 2015, Shanghai, China, pp. 394–410 (2015)

    Google Scholar 

  11. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 252–263. ACM (2017). https://doi.org/10.1145/3055399.3055409

  12. Belta, C., Yordanov, B., Gol, E.: Formal Methods for Discrete-Time Dynamical Systems. Studies in Systems, Decision and Control, vol. 15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50763-7

  13. Chatterjee, K., de Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware resource management. Formal Methods Syst. Des. 42(2), 146–174 (2013)

    Article  Google Scholar 

  14. Chatterjee, K., Henzinger, T., Jobstmann, B.: Environment assumptions for synthesis. In: CONCUR, pp. 147–161 (2008)

    Google Scholar 

  15. Chatterjee, K., Horn, F., Löding, C.: Obliging games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 284–296. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_20

    Chapter  Google Scholar 

  16. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live behavior models. In: 18th International Symposium on Foundations of Software Engineering, pp. 77–86. ACM (2010)

    Google Scholar 

  17. D’Ippolito, N., Rodríguez, N., Sardiña, S.: Fully observable non-deterministic planning as assumption-based reactive synthesis. J. Artif. Intell. Res. 61, 593–621 (2018)

    Article  MathSciNet  Google Scholar 

  18. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1–4 October 1991, pp. 368–377. IEEE Computer Society (1991). https://doi.org/10.1109/SFCS.1991.185392

  19. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999). https://doi.org/10.1137/S0097539793304741

    Article  MathSciNet  Google Scholar 

  20. Francez, N.: Fairness. Springer, Heidelberg (1986)

    Book  Google Scholar 

  21. Hausmann, D., Schröder, L.: Quasipolynomial computation of nested fixpoints. In: TACAS 2021. LNCS, vol. 12651, pp. 38–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_3

    Chapter  Google Scholar 

  22. Jurdzinski, M., Morvan, R., Thejaswini, K.S.: Universal algorithms for parity games and nested fixpoints. In: Raskin, J., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design. LNCS, vol. 13660, pp. 252–271. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22337-2_12

    Chapter  Google Scholar 

  23. Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 161–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19583-9_16

    Chapter  Google Scholar 

  24. Lehtinen, K., Parys, P., Schewe, S., Wojtczak, D.: A recursive approach to solving parity games in quasipolynomial time. Log. Methods Comput. Sci. 18(1) (2022). https://doi.org/10.46298/lmcs-18(1:8)2022

  25. Lindemann, L., Pappas, G.J., Dimarogonas, D.V.: Reactive and risk-aware control for signal temporal logic. IEEE Trans. Autom. Control 67(10), 5262–5277 (2022). https://doi.org/10.1109/TAC.2021.3120681

    Article  MathSciNet  Google Scholar 

  26. Liu, J.: Closing the gap between discrete abstractions and continuous control: completeness via robustness and controllability. In: Dima, C., Shirmohammadi, M. (eds.) FORMATS 2021. LNCS, vol. 12860, pp. 67–83. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85037-1_5

    Chapter  Google Scholar 

  27. Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Symbolic control for stochastic systems via parity games. CoRR abs/2101.00834 (2021)

    Google Scholar 

  28. Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Symbolic qualitative control for stochastic systems via finite parity games. In: Jungers, R.M., Ozay, N., Abate, A. (eds.) 7th IFAC Conference on Analysis and Design of Hybrid Systems, ADHS 2021, Brussels, Belgium, 7–9 July 2021. IFAC-PapersOnLine, vol. 54, pp. 127–132. Elsevier (2021). https://doi.org/10.1016/j.ifacol.2021.08.486

  29. Majumdar, R., Piterman, N., Schmuck, A.-K.: Environmentally-friendly GR(1) synthesis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 229–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_13

    Chapter  Google Scholar 

  30. Maoz, S., Ringert, J.O., Shalom, R.: Symbolic repairs for GR(1) specifications. In: ICSE (2019)

    Google Scholar 

  31. Mohajerani, S., Malik, R., Wintenberg, A., Lafortune, S., Ozay, N.: Divergent stutter bisimulation abstraction for controller synthesis with linear temporal logic specifications. Autom. 130, 109723 (2021). https://doi.org/10.1016/j.automatica.2021.109723

    Article  MathSciNet  Google Scholar 

  32. Nayak, S., Egidio, L., Rossa, M.D., Schmuck, A.K., Jungers, R.: Context-triggered abstraction-based control design. IEEE Open J. Control Syst. 1–21 (2023). https://doi.org/10.1109/OJCSYS.2023.3305835

  33. Nilsson, P., Ozay, N., Liu, J.: Augmented finite transition systems as abstractions for control synthesis. Discret. Event Dyn. Syst. 27(2), 301–340 (2017). https://doi.org/10.1007/s10626-017-0243-z

    Article  MathSciNet  Google Scholar 

  34. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: Rossmanith, P., Heggernes, P., Katoen, J.P. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 138, pp. 10:1–10:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.10

  35. Queille, J., Sifakis, J.: Fairness and related properties in transition systems - a temporal logic to deal with fairness. Acta Informatica 19, 195–220 (1983)

    Article  MathSciNet  Google Scholar 

  36. Sanfelice, R.G.: Hybrid Feedback Control. Princeton University Press, Princeton (2020)

    Google Scholar 

  37. Schmuck, A.K., Thejaswini, K.S., Sağlam, I., Nayak, S.P.: Solving two-player games under progress assumptions (extended version). arXiv:2310.12767 (2023)

  38. Sun, F., Ozay, N., Wolff, E.M., Liu, J., Murray, R.M.: Efficient control synthesis for augmented finite transition systems with an application to switching protocols. In: 2014 American Control Conference, pp. 3273–3280 (2014). https://doi.org/10.1109/ACC.2014.6859428

  39. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0224-5d

    Book  Google Scholar 

  40. Thomas, W.: Languages, Automata, and Logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7

    Chapter  Google Scholar 

  41. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Sağlam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmuck, AK., Thejaswini, K.S., Sağlam, I., Nayak, S.P. (2024). Solving Two-Player Games Under Progress Assumptions. In: Dimitrova, R., Lahav, O., Wolff, S. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2024. Lecture Notes in Computer Science, vol 14499. Springer, Cham. https://doi.org/10.1007/978-3-031-50524-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50524-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50523-2

  • Online ISBN: 978-3-031-50524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics