Skip to main content

Post–mining on Association Rule Bases

  • Conference paper
  • First Online:
Artificial Intelligence. ECAI 2023 International Workshops (ECAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1948))

Included in the following conference series:

  • 211 Accesses

Abstract

Association rule mining identifies potentially unknown correlations between columns in a relational database and is therefore a central task in the data mining process. In many cases though, the resulting set of association rules is by far too big and confusing for a domain expert to extract useful knowledge. Moreover, the domain expert might often expect that particular association rules are generated by the data mining process and would like to be able to search, e. g., for similar rules according to their expectation.

In this paper, we propose to store association rules in a rule base which will offer functionality for the management of the rules. The rule base can also offer subsumption features for condensing huge sets of derived association rules to smaller subsets of interesting rules that can be investigated by the domain expert. The rule base can store association rules derived in different attempts of rule mining. And depending on the result of a rule mining attempt, further attempts can be initiated. The post–processing of the rule mining result, for example, can derive further association rules by grouping the values of attributes in their consequences; it can also initiate another round of pre-processing of the base relation to group certain values of certain attributes to sets (tiles), and thus to derive correlations between sets of attribute values in further steps of association rule mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD, vol. 22, pp. 207–216. ACM (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB Conference, Santiago de Chile, pp. 487–499 (1994)

    Google Scholar 

  3. Atzmueller, M.: Subgroup Discovery. WIREs Data Min. Knowl. Disc. 5(1), 35–49 (2015)

    Article  Google Scholar 

  4. Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and explainable analysis. Abstract. Dutch-Belgian Database Day, TU Eindhoven (2017)

    Google Scholar 

  5. Atzmueller, M.: Declarative aspects in explicative data mining for computational sensemaking. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 97–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00801-7_7

    Chapter  Google Scholar 

  6. Atzmueller, M., Hayat, N., Trojahn, M., Kroll, D.: Explicative human activity recognition using adaptive association rule-based classification. In: Proceedings of IEEE International Conference on Future IoT Technologies, IEEE, Boston, MA, USA (2018)

    Google Scholar 

  7. Atzmueller, M., Lemmerich, F., Krause, B., Hotho, A.: Who are the spammers? Understandable local patterns for concept description. In: Proceedings of 7th Conference on Computer Methods and Systems. Oprogramowanie Nauko-Techniczne, Krakow, Poland (2009)

    Google Scholar 

  8. Bao, F., Mao, L., Zhu, Y., Xiao, C., Xu, C.: An improved evaluation methodology for mining association rules. Axioms 11(1), 17 (2021)

    Article  Google Scholar 

  9. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82 – 115 (2020)

    Google Scholar 

  10. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. Data Min. Knowl. Disc. 4(2–3), 217–240 (2000)

    Article  Google Scholar 

  11. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI-17 Workshop on Explainable AI (2017)

    Google Scholar 

  12. Brin, S., Motwani, R., Silverstein, C.: beyond market baskets: generalizing association rules to correlations. In: Proceedings of ACM SIGMOD, pp. 265–276 (1997)

    Google Scholar 

  13. Bruzzese, D., Buono, P.: Combining visual techniques for association rules exploration. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 381–384 (2004)

    Google Scholar 

  14. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020)

    Article  Google Scholar 

  15. Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Disc. 30(1), 47–98 (2016)

    Article  MathSciNet  Google Scholar 

  16. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37–54 (1996)

    Google Scholar 

  17. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. AI Mag. 13(3), 57–57 (1992)

    Google Scholar 

  18. Freitas, A.A.: On rule interestingness measures. Knowl.-Based Syst. 12(5–6), 309–325 (1999)

    Article  Google Scholar 

  19. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9-es (2006)

    Google Scholar 

  20. Gottlob, G.: Subsumption and implication. Inf. Process. Lett. 24(2), 109–111 (1987)

    Article  MathSciNet  Google Scholar 

  21. Hahsler, M.: A probabilistic comparison of commonly used interest measures for association rules (2015). https://mhahsler.github.io/arules/docs/measures

  22. Hahsler, M., Buchta, C., Hornik, K.: Selective association rule generation. Comput. Stat. 23(2), 303–315 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation. Springer, Berlin (1978). https://doi.org/10.1007/978-3-642-66943-9

  24. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proceedings of ACM SIGMOD, pp. 1–12. ACM Press (2000)

    Google Scholar 

  25. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)

    Article  Google Scholar 

  26. Ilkou, E., Koutraki, M.: Symbolic vs sub-symbolic AI methods: Friends or enemies? In: CIKM (Workshops), vol. 2699 (2020)

    Google Scholar 

  27. Imieliński, T., Virmani, A.: Association rules... and what’s next? — towards second generation data mining systems. In: Litwin, W., Morzy, T., Vossen, G. (eds.) ADBIS 1998. LNCS, vol. 1475, pp. 6–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057713

    Chapter  Google Scholar 

  28. Mahdi, M.A., Hosny, K.M., Elhenawy, I.: Fr-tree: a novel rare association rule for big data problem. Expert Syst. Appl. 187, 115898 (2022)

    Article  Google Scholar 

  29. Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association rules using ontologies. IEEE Trans. Knowl. Data Eng. 22(6), 784–797 (2010)

    Article  Google Scholar 

  30. McMillan, C., Mozer, M.C., Smolensky, P.: Rule induction through integrated symbolic and subsymbolic processing. In: Advances in Neural Information Processing Systems, vol. 4 (1991)

    Google Scholar 

  31. Olson, D.L., Araz, Ö.M.: Association rules. In: Data Mining and Analytics in Healthcare Management: Applications and Tools, pp. 35–52. Springer, Cham (2023)

    Google Scholar 

  32. Piatetsky-Shapiro, G., Matheus, C.J.: The Interestingness of deviations. In: Proceedings of AAAI-94 Workshop on Knowledge Discovery in Databases (KDD-94), pp. 25–36. ACM Press, New York (1994)

    Google Scholar 

  33. Rauch, J.: Observational Calculi and Association Rules. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-11737-4

  34. Seipel, D.: Declare – a declarative toolkit for knowledge–based systems and logic programming (2005)

    Google Scholar 

  35. Seipel, D.: Advanced Databases, Lecture Notes of a Course at the University of Würzburg (since 2015)

    Google Scholar 

  36. Seipel, D., Atzmueller, M.: Declarative knowledge discovery in databases via meta–learning–towards advanced analytics. In: Proceedings of the International Workshop on Semantic Data Mining (SEDAMI 2021), co-located with the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021). CEUR Workshop Proceedings, vol. 3032, pp. 1–5. CEUR-WS.org (2021)

    Google Scholar 

  37. Vollert, S., Atzmueller, M., Theissler, A.: Interpretable machine learning: a brief survey from the predictive maintenance perspective. In: Proceedings of IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2021), IEEE (2021)

    Google Scholar 

  38. Webb, G.I.: Efficient search for association rules. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–107 (2000)

    Google Scholar 

  39. Weidner, D., Atzmueller, M., Seipel, D.: Finding maximal non-redundant association rules in tennis data. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 59–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2_4

    Chapter  Google Scholar 

  40. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann, Burlington (2000)

    Google Scholar 

  41. Zhang, A., Shi, W., Webb, G.I.: Mining significant association rules from uncertain data. Data Min. Knowl. Disc. 30, 928–963 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhang, S., Webb, G.I.: Further pruning for efficient association rule discovery. In: Stumptner, M., Corbett, D., Brooks, M. (eds.) AI 2001. LNCS (LNAI), vol. 2256, pp. 605–618. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45656-2_52

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Seipel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seipel, D., Waleska, M., Weidner, D., Rausch, S., Atzmueller, M. (2024). Post–mining on Association Rule Bases. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1948. Springer, Cham. https://doi.org/10.1007/978-3-031-50485-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50485-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50484-6

  • Online ISBN: 978-3-031-50485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics