Skip to main content

Brain Neural Network Architectures in Sleep-Wake Cycle

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2023 (BICA 2023)

Abstract

The article presents an attempt to search for neurophysiological mechanisms of maintaining different levels of consciousness by studying the cognitive processes of the sleep-wake transition. To perform this study, a psychomotor test was developed, the monotonous performance of which, during 60 min, causes alternating episodes with the disappearance of consciousness when falling asleep (“microsleep”) and its recovery when waking up (wakefulness). It is shown that the structure of transitions is individual in terms of the spatial localization of neural networks. A common tendency is the extensive activation of cortical-subcortical areas 2-4 TR (4–8 s) before the moment of waking fixation. Functional magnetic resonance imaging (fMRI) signal changes in brain neural networks were recorded during dynamic transitions: thalamus, hippocampus and parahippocampal gyrus, cerebellum, sensorimotor cortex, somato-sensory association cortex, secondary motor area, visual cortex, bilateral inferior parietal cortex, frontal temporal regions, pale globus and putamen area, insular cortex, cuneus, precuneus, anterior and middle cingulate cortex. The results reflect the complex individual dynamic activity of brain neural networks involved in the sleep-wake states, some of which is probably related to the preparation for the realization of the test motor task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., Varoquaux, G.: Varoquaux: machine learning for neuroimaging with scikit-learn. Front. Neuroinf. 8 (2014)

    Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1), 90–101 (2007)

    Article  Google Scholar 

  4. Cox, R.W., Hyde, J.S.: Software tools for analysis and visualization of fMRI data. NMR Biomed. 10(4–5), 171–178 (1997)

    Article  Google Scholar 

  5. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999)

    Article  Google Scholar 

  6. Dorokhov, V.B., Malakhov, D.G., Orlov, V.A., Ushakov, V.L.: Experimental model of study of consciousness at the awakening: FMRI, EEG and behavioral methods. Adv. Intell. Syst. Comput. 848, 82–87 (2019)

    Article  Google Scholar 

  7. Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Erramuzpe, A., Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., Oya, H.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019)

    Google Scholar 

  8. Esteban, O., Ross, B., Christopher, J.M., Shoshana, L.B., Craig, M., Feilong, M., Ayse, I.I., et al.: fMRIPrep 22.1.1. Software (2018)

    Google Scholar 

  9. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47(Supplement 1), S102 (2009)

    Google Scholar 

  10. Gorgolewski, K., et al.: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinform. 5, 13 (2011)

    Article  Google Scholar 

  11. Gorgolewski, K.J., Esteban, O., Markiewicz, C.J., Ziegler, E., Ellis, D.G., Notter, M.P., Jarecka, D., Johnson, H., Burns, C., Manhães-Savio, A., Hamalainen, C.: Nipype. Software (2018)

    Google Scholar 

  12. Greve, D.N., Fischl, B.: Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1), 63–72 (2009)

    Google Scholar 

  13. Hobson, J.A.: Sleep is of the brain, by the brain and for the brain. Nature 437, 1254–1256 (2005)

    Article  Google Scholar 

  14. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  15. Klein, A., Ghosh, S.S., Bao, F.S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Chaibub Neto, E., Keshavan, A.: Mindboggling morphometry of human brains. PLOS Comput. Biol. 13(2), e1005350 (2017)

    Google Scholar 

  16. Krause, A.J., et al.: The sleep-deprived human brain. Nat. Rev. Neurosci. 18(7), 404–418 (2017)

    Article  Google Scholar 

  17. Lanczos, C.: Evaluation of noisy data. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1(1), 76–85 (1964)

    Article  MathSciNet  Google Scholar 

  18. Patriat, R., Reynolds, R.C., Birn, R.M.: An improved model of motion-related signal changes in fMRI. NeuroImage 144:74–82 (2017)

    Google Scholar 

  19. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Petersen: methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84(Supplement C), 320–41 (2014)

    Google Scholar 

  20. Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E., Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H.: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64(1), 240–56 (2013)

    Google Scholar 

  21. Stevner, A.B.A., et al.: Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat. Commun. 10(1), 1035 (2019)

    Article  Google Scholar 

  22. Tagliazucchi, E., Laufs, H.: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82(3), 695–708 (2014)

    Article  Google Scholar 

  23. Tagliazucchi, E., van Someren, E.J.W.: The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage 160, 55–72 (2017)

    Article  Google Scholar 

  24. Tustison, N.J., et al.: N4itk: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  25. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Russian Foundation for BasicResearch grant № 23–78-00010, https://rscf.ru/en/project/23-78-00010/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim L. Ushakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ushakov, V.L., Khazova, M.L., Zhigulina, P.E., Orlov, V.A., Malakhov, D.G., Dorokhov, V.B. (2024). Brain Neural Network Architectures in Sleep-Wake Cycle. In: Samsonovich, A.V., Liu, T. (eds) Biologically Inspired Cognitive Architectures 2023. BICA 2023. Studies in Computational Intelligence, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-031-50381-8_97

Download citation

Publish with us

Policies and ethics