Skip to main content

For the Nuclei Segmentation of Liver Cancer Histopathology Images, A Deep Learning Detection Approach is Used

  • Chapter
  • First Online:
Engineering Applications of Artificial Intelligence
  • 128 Accesses

Abstract

One of the cancers that causes the greatest mortality is liver cancer worldwide. Consequently, early identification and detection of potential Cancer mortality is decreased thanks to liver cancer. Traditionally, Histopathological Image Analysis (HIA) was performed, however these take a lot of time and require in-depth understanding. We the segmentation and classification of liver cells is advised to use a patch-based deep learning approach. In this work, complete slides are categorized and divided using a two-step process (WSI is a suggested image). WSIs must first be extracted into patches since they stand besides huge toward stay input directly interested in convolutional neural networks (CNN). Supplying the patches to a modified U-Net through its comparable veneer for targeted segmentation. For arrangement responsibilities the WSIs are mounted at 4, equivalent to 3x, 16x, and 64x. Each scale’s deleted patches and associated labels are then fed into the convolutional network. Inference is a process where we majority voting on the convolutional neural network’s output network. Better outcomes have been seen with the suggested strategy. Whole-slide image, segmentation, classification, and patch-based methods for histopathological image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, F., Xie, Y., & Yang, L. (2015). An automatic learning-based framework for robust nucleus segmentation. IEEE Transactions on Medical Imaging, 35(2), 550–566.

    Article  Google Scholar 

  2. Xie, L., Qi, J., Pan, L., & Wali, S. (2020). Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images. Neurocomputing, 376, 166–179.

    Article  Google Scholar 

  3. Wong, I. H., Dennis Lo, Y. M., Zhang, J., Liew, C. T., Ng, M. H., Wong, N., & Johnson, P. J. (1999). Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Research, 59(1), 71–73.

    Google Scholar 

  4. Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., & Fan, Q. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Research, 38(16), 5366–5383.

    Article  Google Scholar 

  5. Ullah, A., Salam, A., El-Raoui, H., Sebai, D., & Rafie, M. (2022). Towards more accurate iris recognition system by using hybrid approach for feature extraction along with classifier. International Journal of Reconfigurable and Embedded Systems (IJRES), 11(1), 59–70.

    Article  Google Scholar 

  6. Ullah, A., Khan, S. A., Alam, T., Luma-Osmani, S., & Sadie, M. (2022). Heart disease classification using various heuristic algorithms. International Journal of Advanced and Applied Sciences, 2252(8814), 8814.

    Google Scholar 

  7. Ullah, A., Dinler, Ö. B., & Şahin, C. B. (2021). The effect of technology and service on learning systems during the COVID-19 pandemic. Avrupa Bilim ve Teknoloji Dergisi, 28, 106–114.

    Google Scholar 

  8. Ullah, A., & Nawi, N. M. (2021). An improved in tasks allocation system for virtual machines in cloud computing using HBAC algorithm. Journal of Ambient Intelligence and Humanized Computing, 1–14.

    Google Scholar 

  9. Sun, C., Xu, A., Liu, D., Xiong, Z., Zhao, F., & Ding, W. (2019). Deep learning-based classification of liver cancer histopathology images using only global labels. IEEE Journal of Biomedical and Health Informatics, 24(6), 1643–1651.

    Article  Google Scholar 

  10. Sigirci, I. O., Albayrak, A., & Bilgin, G. (2022). Detection of mitotic cells in breast cancer histopathological images using deep versus handcrafted features. Multimedia Tools and Applications, 1–24.

    Google Scholar 

  11. Shi, H. Y., Lee, K. T., Lee, H. H., Ho, W. H., Sun, D. P., Wang, J. J., & Chiu, C. C. (2012). Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE, 7(4), e35781.

    Article  Google Scholar 

  12. Salvi, M., Acharya, U. R., Molinari, F., & Meiburger, K. M. (2021). The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Computers in Biology and Medicine, 128, 104129.

    Article  Google Scholar 

  13. Roy, S., Das, D., Lal, S., & Kini, J. (2023). Novel edge detection method for nuclei segmentation of liver cancer histopathology images. Journal of Ambient Intelligence and Humanized Computing, 14(1), 479–496.

    Article  Google Scholar 

  14. Rong, R., Sheng, H., Jin, K. W., Wu, F., Luo, D., Wen, Z., & Xiao, G. (2023). A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization. Modern Pathology, 36(8), 100196.

    Article  Google Scholar 

  15. Riasatian, A., Rasoolijaberi, M., Babaei, M., & Tizhoosh, H. R. (2020). A comparative study of U-net topologies for background removal in histopathology images. In: 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.

    Google Scholar 

  16. Ouhame, S., & Hadi, Y. (2020). A hybrid grey wolf optimizer and artificial bee colony algorithm used for improvement in resource allocation system for cloud technology. International Journal of Online & Biomedical Engineering16(14).

    Google Scholar 

  17. Muñoz-Aguirre, M., Ntasis, V. F., Rojas, S., & Guigó, R. (2020). PyHIST: A histological image segmentation tool. PLoS Computational Biology, 16(10), e1008349.

    Article  Google Scholar 

  18. Mahmood, F., Borders, D., Chen, R. J., McKay, G. N., Salimian, K. J., Baras, A., & Durr, N. J. (2019). Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Transactions on Medical Imaging, 39(11), 3257–3267.

    Article  Google Scholar 

  19. Loodaricheh, M. A., Karimi, N., & Samavi, S. (2021). Nuclei segmentation in histopathology images using deep learning with local and global views. arXiv preprint arXiv:2112.03998

  20. Li, X., Pi, J., Lou, M., Qi, Y., Li, S., Meng, J., & Ma, Y. (2023). Multi-level feature fusion network for nuclei segmentation in digital histopathological images. The Visual Computer, 39(4), 1307–1322.

    Google Scholar 

  21. Lal, S., Das, D., Alabhya, K., Kanfade, A., Kumar, A., & Kini, J. (2021). NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images. Computers in Biology and Medicine, 128, 104075.

    Article  Google Scholar 

  22. Kim, B., Yoo, Y., Rhee, C. E., & Kim, J. (2022). Beyond semantic to instance segmentation: Weakly-supervised instance segmentation via semantic knowledge transfer and self-refinement. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4278–4287).

    Google Scholar 

  23. Jimenez-del-Toro, O., Otálora, S., Andersson, M., Eurén, K., Hedlund, M., Rousson, M., & Atzori, M. (2017). Analysis of histopathology images: From traditional machine learning to deep learning. In Biomedical texture analysis (pp. 281–314). Academic Press.

    Google Scholar 

  24. Jaisakthi, S. M., Desingu, K., Mirunalini, P., Pavya, S., & Priyadharshini, N. (2023). A deep learning approach for nucleus segmentation and tumor classification from lung histopathological images. Network Modeling Analysis in Health Informatics and Bioinformatics, 12(1), 22.

    Article  Google Scholar 

  25. Huang, P. W., Ouyang, H., Hsu, B. Y., Chang, Y. R., Lin, Y. C., Chen, Y. A., & Pai, T. W. (2023). Deep-learning based breast cancer detection for cross-staining histopathology images. Heliyon9(2).

    Google Scholar 

  26. Hu, Z., Tang, J., Wang, Z., Zhang, K., Zhang, L., & Sun, Q. (2018). Deep learning for image-based cancer detection and diagnosis—A survey. Pattern Recognition, 83, 134–149.

    Article  Google Scholar 

  27. He, W., Liu, T., Han, Y., Ming, W., Du, J., Liu, Y., & Cao, C. (2022). A review: The detection of cancer cells in histopathology based on machine vision. Computers in Biology and Medicine, 146, 105636.

    Article  Google Scholar 

  28. Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang, Y. W., Kwak, J. T., & Rajpoot, N. (2019). Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Medical Image Analysis, 58, 101563.

    Article  Google Scholar 

  29. Elazab, N., Soliman, H., El-Sappagh, S., Islam, S. R., & Elmogy, M. (2020). Objective diagnosis for histopathological images based on machine learning techniques: Classical approaches and new trends. Mathematics, 8(11), 1863.

    Article  Google Scholar 

  30. dos Santos Silva, T. D., Bomfim, L. M., da Cruz Rodrigues, A. C. B., Dias, R. B., Sales, C. B. S., Rocha, C. A. G., & Militão, G. C. G. (2017). Anti-liver cancer activity in vitro and in vivo induced by 2-pyridyl 2, 3-thiazole derivatives. Toxicology and applied pharmacology, 329, 212–223.

    Article  Google Scholar 

  31. Cui, Y., Zhang, G., Liu, Z., Xiong, Z., & Hu, J. (2019). A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images. Medical & Biological Engineering & Computing, 57, 2027–2043.

    Article  Google Scholar 

  32. Chanchal, A. K., Kumar, A., Lal, S., & Kini, J. (2021). Efficient and robust deep learning architecture for segmentation of kidney and breast histopathology images. Computers & Electrical Engineering, 92, 107177.

    Article  Google Scholar 

  33. Basu, A., Senapati, P., Deb, M., Rai, R., & Dhal, K. G. (2023). A survey on recent trends in deep learning for nucleus segmentation from histopathology images. Evolving Systems, 1–46.

    Google Scholar 

  34. Baseer, S., & Umar, S. (2016). Role of cooperation in energy minimization in visual sensor network. In 2016 sixth international conference on innovative computing technology (INTECH) (pp. 447–452). IEEE.

    Google Scholar 

  35. Aznaoui, H., Raghay, S., & Khan, M. H. (2021). Energy efficient strategy for WSN technology using modified HGAF technique. iJOE17(06), 5.

    Google Scholar 

  36. Alam, T., Gupta, R., Qamar, S., & Ullah, A. (2022). Recent applications of artificial intelligence for sustainable development in smart cities. Recent innovations in artificial intelligence and smart applications (pp. 135–154). Springer International Publishing.

    Chapter  Google Scholar 

  37. Ahmad, I., Xia, Y., Cui, H., & Islam, Z. U. (2023). DAN-NucNet: A dual attention based framework for nuclei segmentation in cancer histology images under wild clinical conditions. Expert Systems with Applications, 213, 118945.

    Article  Google Scholar 

  38. Aatresh, A. A., Yatgiri, R. P., Chanchal, A. K., Kumar, A., Ravi, A., Das, D., & Kini, J. (2021). Efficient deep learning architecture with dimension-wise pyramid pooling for nuclei segmentation of histopathology images. Computerized Medical Imaging and Graphics, 93, 101975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arifullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arifullah, Chakir, A., Sebai, D., Salam, A. (2024). For the Nuclei Segmentation of Liver Cancer Histopathology Images, A Deep Learning Detection Approach is Used. In: Chakir, A., Andry, J.F., Ullah, A., Bansal, R., Ghazouani, M. (eds) Engineering Applications of Artificial Intelligence. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-50300-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50300-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50299-6

  • Online ISBN: 978-3-031-50300-9

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics