Skip to main content

Sparse Graph Hashing with Spectral Regression

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14498))

Included in the following conference series:

  • 221 Accesses

Abstract

Learning-based hashing has received increasing research attention due to its promising efficiency for large-scale similarity search. However, most existing manifold-based hashing methods cannot capture the intrinsic structure and discriminative information of image samples. In this paper, we propose a new learning-based hashing method, namely, Sparse Graph Hashing with Spectral Regression (SGHSR), for approximate nearest neighbor search. We first propose a sparse graph model to learn the real-valued codes which can not only preserves the manifold structure of the data, but also adaptively selects sparse and discriminative features. Then, we use a spectral regression to convert the real-valued codes into high-quality binary codes such that the information loss between the original space and the Hamming space can be well minimized. Extensive experimental results on three widely used image databases demonstrate that our SGHSR method outperforms the state-of-the-art unsupervised manifold-based hashing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    https://www.cs.toronto.edu/~kriz/cifar.html.

  3. 3.

    https://groups.csail.mit.edu/vision/SUN/.

References

  1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

    Article  Google Scholar 

  2. Shuai, C., Wang, X., He, M., Ouyang, X., Yang, J.: A presentation and retrieval hash scheme of images based on principal component analysis. Vis. Comput. 37, 2113–2126 (2021)

    Article  Google Scholar 

  3. Dean, T., Ruzon, M.A., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1814–1821 (2013)

    Google Scholar 

  4. Shen, F., Shen, C., Liu, W., Tao Shen, H.: Supervised discrete hashing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 37–45 (2015)

    Google Scholar 

  5. Xiao, Y., Zhang, W., Dai, X., Dai, X., Zhang, N.: Robust supervised discrete hashing. Neurocomputing 483, 398–410 (2022)

    Article  Google Scholar 

  6. Qin, J., Fei, L., Zhang, Z., Wen, J., Xu, Y., Zhang, D.: Joint specifics and consistency hash learning for large-scale cross-modal retrieval. IEEE Trans. Image Process. 31, 5343–5358 (2022)

    Article  Google Scholar 

  7. Su, H., Han, M., Liang, J., Liang, J., Yu, S.: Deep supervised hashing with hard example pairs optimization for image retrieval. Vis. Comput. 39, 1–16 (2022)

    Google Scholar 

  8. Liu, J., et al.: Discrete semantic embedding hashing for scalable cross-modal retrieval. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1461–1467. IEEE (2021)

    Google Scholar 

  9. Qin, J., et al.: Discrete semantic matrix factorization hashing for cross-modal retrieval. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1550–1557. IEEE (2021)

    Google Scholar 

  10. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3424–3431. IEEE (2010)

    Google Scholar 

  11. Hu, H., Wang, K., Lv, C., Wu, J., Yang, Z.: Semi-supervised metric learning-based anchor graph hashing for large-scale image retrieval. IEEE Trans. Image Process. 28(2), 739–754 (2018)

    Article  MathSciNet  Google Scholar 

  12. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

    Google Scholar 

  13. Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML (2011)

    Google Scholar 

  14. Li, X., Hu, D., Nie, F.: Large graph hashing with spectral rotation. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  15. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2012)

    Article  Google Scholar 

  16. Hoang, T., Do, T.T., Le, H., Le-Tan, D.K., Cheung, N.M.: Simultaneous compression and quantization: a joint approach for efficient unsupervised hashing. Comput. Vis. Image Underst. 191, 102852 (2020)

    Article  Google Scholar 

  17. Hu, D., Nie, F., Li, X.: Discrete spectral hashing for efficient similarity retrieval. IEEE Trans. Image Process. 28(3), 1080–1091 (2018)

    Article  MathSciNet  Google Scholar 

  18. Jin, S., Yao, H., Zhou, Q., Liu, Y., Huang, J., Hua, X.: Unsupervised discrete hashing with affinity similarity. IEEE Trans. Image Process. 30, 6130–6141 (2021)

    Article  MathSciNet  Google Scholar 

  19. Hu, Z., Nie, F., Chang, W., Hao, S., Wang, R., Li, X.: Multi-view spectral clustering via sparse graph learning. Neurocomputing 384, 1–10 (2020)

    Article  Google Scholar 

  20. Lai, Z., Chen, Y., Wu, J., Wong, W.K., Shen, F.: Jointly sparse hashing for image retrieval. IEEE Trans. Image Process. 27(12), 6147–6158 (2018)

    Article  MathSciNet  Google Scholar 

  21. X, W., et al.: Binary representation via jointly personalized sparse hashing. ACM Trans. Multimed. Comput. Commun. Appl. 18(3s), 1–20 (2022)

    Article  Google Scholar 

  22. Wang, W., Zhang, H., Zhang, Z., Liu, L., Shao, L.: Sparse graph based self-supervised hashing for scalable image retrieval. Inf. Sci. 547, 622–640 (2021)

    Article  MathSciNet  Google Scholar 

  23. Wang, W., Shen, Y., Zhang, H., Yao, Y., Liu, L.: Set and rebase: determining the semantic graph connectivity for unsupervised cross-modal hashing. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 853–859 (2021)

    Google Scholar 

  24. Panda, M.R., Kar, S.S., Nanda, A.K., Priyadarshini, R., Panda, S., Bisoy, S.K.: Feedback through emotion extraction using logistic regression and CNN. Vis. Comput. 38(6), 1975–1987 (2022)

    Article  Google Scholar 

  25. Cai, D., He, X., Han, J.: Spectral regression: a unified subspace learning framework for content-based image retrieval. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 403–412 (2007)

    Google Scholar 

  26. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: 2011 International Conference on Computer Vision, pp. 471–478. IEEE (2011)

    Google Scholar 

  27. Stewart, G.W.: Matrix Algorithms: Volume II: Eigensystems. In: SIAM (2001)

    Google Scholar 

  28. Cou, C., Guennebaud, G.: Depth from focus using windowed linear least squares regressions. Vis. Comput. 1–10 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 62176066, 62106052 and 62006059, and in part by the Natural Science Foundation of Guangdong Province under Grant 2023A1515012717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunke Fei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Qin, J., Fei, L., Zhao, S., Wen, J., Wang, B. (2024). Sparse Graph Hashing with Spectral Regression. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14498. Springer, Cham. https://doi.org/10.1007/978-3-031-50078-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50078-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50077-0

  • Online ISBN: 978-3-031-50078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics