Skip to main content

tGLAD: A Sparse Graph Recovery Based Approach for Multivariate Time Series Segmentation

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14343))

  • 176 Accesses

Abstract

Segmentation of multivariate time series data is a valuable technique for identifying meaningful patterns or changes in the time series that can signal a shift in the system’s behavior. We introduce a domain agnostic framework ‘tGLAD’ for multivariate time series segmentation using conditional independence (CI) graphs that capture the partial correlations. It draws a parallel between the CI graph nodes and the variables of the time series. Consider applying a graph recovery model uGLAD to a short interval of the time series, it will result in a CI graph that shows partial correlations among the variables. We extend this idea to the entire time series by utilizing a sliding window to create a batch of time intervals and then run a single uGLAD model in multitask learning mode to recover all the CI graphs simultaneously. As a result, we obtain a corresponding temporal CI graphs representation of the multivariate time series. We then designed a first-order and second-order based trajectory tracking algorithm to study the evolution of these graphs across distinct intervals. Finally, an ‘Allocation’ algorithm is designed to determine a suitable segmentation of the temporal graph sequence which corresponds to the original multivariate time series. tGLAD provides a competitive time complexity of O(N) for settings where number of variables \(D<<N\). We demonstrate successful empirical results on a Physical Activity Monitoring data. (Software: https://github.com/Harshs27/tGLAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: Engrain: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38, 1312–1319 (2021)

    Article  Google Scholar 

  2. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

    Article  Google Scholar 

  3. Aoki, T., Lin, J.F.S., Kulić, D., Venture, G.: Segmentation of human upper body movement using multiple IMU sensors. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3163–3166. IEEE (2016)

    Google Scholar 

  4. Castellini, A., Bicego, M., Masillo, F., Zuccotto, M., Farinelli, A.: Time series segmentation for state-model generation of autonomous aquatic drones: A systematic framework. Eng. Appl. Artif. Intell. 90, 103499 (2020)

    Article  Google Scholar 

  5. Deldari, S., Smith, D.V., Sadri, A., Salim, F.D.: Espresso: entropy and shape aware time-series segmentation for processing heterogeneous sensor data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 77:1–77:24 (2020)

    Google Scholar 

  6. Ermshaus, A., Schäfer, P., Leser, U.: Clasp-parameter-free time series segmentation. arXiv preprint arXiv:2207.13987 (2022)

  7. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  8. Gharghabi, S., et al.: Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Disc. 33(1), 96–130 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 205–213 (2017)

    Google Scholar 

  10. Harguess, J., Aggarwal, J.: Semantic labeling of track events using time series segmentation and shape analysis. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 4317–4320. IEEE (2009)

    Google Scholar 

  11. Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6(1), 1–17 (2012)

    Article  Google Scholar 

  12. Imani, S., Abdoli, A., Keogh, E.: Time2cluster: clustering time series using neighbor information (2021)

    Google Scholar 

  13. Imani, S., Keogh, E.: Multi-window-finder: domain agnostic window size for time series data (2021)

    Google Scholar 

  14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press, Cambridge (2009)

    Google Scholar 

  15. Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J., Freedson, P.S.: Validation of wearable monitors for assessing sedentary behavior. Med. Sci. Sports Exerc. 43(8), 1561–1567 (2011)

    Article  Google Scholar 

  16. Lan, R., Sun, H.: Automated human motion segmentation via motion regularities. Vis. Comput. 31, 35–53 (2015)

    Article  Google Scholar 

  17. Lin, J.F.S., Karg, M., Kulić, D.: Movement primitive segmentation for human motion modeling: a framework for analysis. IEEE Trans. Human-Mach. Syst. 46(3), 325–339 (2016)

    Article  Google Scholar 

  18. Lu, S., Huang, S.: Segmentation of multivariate industrial time series data based on dynamic latent variable predictability. IEEE Access 8, 112092–112103 (2020)

    Article  Google Scholar 

  19. Machné, R., Murray, D.B., Stadler, P.F.: Similarity-based segmentation of multi-dimensional signals. Sci. Rep. 7, 12355 (2017)

    Article  Google Scholar 

  20. Moerman, T., et al.: Grnboost2 and arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)

    Article  Google Scholar 

  21. Omranian, N., Mueller-Roeber, B., Nikoloski, Z.: Segmentation of biological multivariate time-series data. Sci. Rep. 5(1), 1–6 (2015)

    Article  Google Scholar 

  22. Pu, X., Cao, T., Zhang, X., Dong, X., Chen, S.: Learning to learn graph topologies. Adv. Neural Inf. Process. Syst. 34, 4249–4262 (2021)

    Google Scholar 

  23. Reinhardt, A., Christin, D., Kanhere, S.S.: Predicting the power consumption of electric appliances through time series pattern matching. In: Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pp. 1–2 (2013)

    Google Scholar 

  24. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE (2012)

    Google Scholar 

  25. Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., Maleki, A.: Iterative thresholding algorithm for sparse inverse covariance estimation. Adv. Neural. Inf. Process. Syst. 25, 1574–1582 (2012)

    Google Scholar 

  26. Serra, J., Müller, M., Grosche, P., Arcos, J.L.: Unsupervised music structure annotation by time series structure features and segment similarity. IEEE Trans. Multimedia 16(5), 1229–1240 (2014)

    Article  Google Scholar 

  27. Shrivastava, H.: On Using Inductive Biases for Designing Deep Learning Architectures. Ph.D. thesis, Georgia Institute of Technology (2020)

    Google Scholar 

  28. Shrivastava, H., Chajewska, U.: Methods for recovering conditional independence graphs: a survey. arXiv preprint arXiv:2211.06829 (2022)

  29. Shrivastava, H., Chajewska, U.: Neural graphical models. arXiv preprint arXiv:2210.00453 (2022)

  30. Shrivastava, H., Chajewska, U.: Neural graph revealers. arXiv preprint arXiv:2302.13582 (2023)

  31. Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: A deep learning approach to recover conditional independence graphs. In: NeurIPS 2022 Workshop: New Frontiers in Graph Learning (2022). https://openreview.net/forum?id=kEwzoI3Am4c

  32. Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: uGLAD: sparse graph recovery by optimizing deep unrolled networks. arXiv preprint arXiv:2205.11610 (2022)

  33. Shrivastava, H., et al.: GLAD: learning sparse graph recovery. arXiv preprint arXiv:1906.00271 (2019)

  34. Shrivastava, H., Zhang, X., Aluru, S., Song, L.: Grnular: gene regulatory network reconstruction using unrolled algorithm from single cell rna-sequencing data. bioRxiv (2020)

    Google Scholar 

  35. Shrivastava, H., Zhang, X., Song, L., Aluru, S.: Grnular: a deep learning framework for recovering single-cell gene regulatory networks. J. Comput. Biol. 29(1), 27–44 (2022)

    Article  Google Scholar 

  36. Vân Anh Huynh-Thu, A.I., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PloS One 5(9) (2010)

    Google Scholar 

  37. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imani, S., Shrivastava, H. (2023). tGLAD: A Sparse Graph Recovery Based Approach for Multivariate Time Series Segmentation. In: Ifrim, G., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-49896-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49896-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49895-4

  • Online ISBN: 978-3-031-49896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics