Skip to main content

Approximation Schemes Under Resource Augmentation for Knapsack and Packing Problems of Hyperspheres and Other Shapes

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2023)

Abstract

The problems we investigate consist in packing hyperspheres in bins optimizing some resource, such as minimizing the number or the size of the bins, or maximizing the total profit associated with the packed items. We present an approximation scheme under resource augmentation for the circle knapsack problem, i.e., a polynomial-time algorithm that, for any constant \({\varepsilon > 0}\), obtains a solution whose value is within a factor of \(1 - \varepsilon \) of the optimal value, using augmented bins of height increased by a factor of \(\varepsilon \). To the best of our knowledge, this is the first approximation scheme for this problem. Additionally, our technique can be extended to accomplish PTASs for other packing problems, like the multiple strip packing problem and the problem of minimizing the size of the bins. Our technique is not restricted to circles and hyperspheres, working for items, bins and strip bases of different convex shapes, such as squares, regular polygons with bounded number of sides, ellipses, among others, and for their generalizations to the d-dimensional case, for constant d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akeb, H., Hifi, M., M’Hallah, R.: A beam search algorithm for the circular packing problem. Comput. Oper. Res. 36(5), 1513–1528 (2009). https://doi.org/10.1016/j.cor.2008.02.003

    Article  MathSciNet  Google Scholar 

  2. Amore, P.: Circle packing in regular polygons. Phys. Fluids (2023). https://doi.org/10.1063/5.0140644

  3. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). https://doi.org/10.1287/moor.1050.0168

    Article  MathSciNet  Google Scholar 

  4. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA 2014, pp. 13–25. Society for Industrial and Applied Mathematics (2014). https://doi.org/10.1137/1.9781611973402.2

  5. Berman, F., Leighton, F.T., Snyder, L.: Optimal tile salvage (1981)

    Google Scholar 

  6. Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Martínez, J.M.: Packing circles within ellipses. Int. Trans. Oper. Res. 20(3), 365–389 (2013). https://doi.org/10.1111/itor.12006

    Article  MathSciNet  Google Scholar 

  7. Birgin, E.G., Lobato, R.D.: A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids. Eur. J. Oper. Res. 272(2), 447–464 (2019). https://doi.org/10.1016/j.ejor.2018.07.006

    Article  MathSciNet  Google Scholar 

  8. Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J. Glob. Optim. 65(4), 709–743 (2015). https://doi.org/10.1007/s10898-015-0395-z

    Article  MathSciNet  Google Scholar 

  9. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008). https://doi.org/10.1016/j.cor.2006.11.002

    Article  MathSciNet  Google Scholar 

  10. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017). https://doi.org/10.1016/j.cosrev.2016.12.001

    Article  MathSciNet  Google Scholar 

  11. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_35

    Chapter  Google Scholar 

  12. Cohn, H., Kumar, A., Miller, S., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension \(24\). Ann. Math. 185(3) (2017). https://doi.org/10.4007/annals.2017.185.3.8

  13. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. In: Origami\(^5\): Proceedings of the 5th International Conference on Origami in Science, Mathematics and Education (OSME 2010), pp. 609–626. A K Peters, Singapore (2010). https://doi.org/10.48550/arXiv.1008.1224

  14. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981). https://doi.org/10.1016/0020-0190(81)90111-3

    Article  MathSciNet  Google Scholar 

  15. Fu, L., Steinhardt, W., Zhao, H., Socolar, J.E.S., Charbonneau, P.: Hard sphere packings within cylinders. Soft Matter 12(9), 2505–2514 (2016). https://doi.org/10.1039/c5sm02875b

    Article  Google Scholar 

  16. Hales, T., Ferguson, S.: A formulation of the Kepler conjecture. Discret. Comput. Geom. 36, 21–69 (2006). https://doi.org/10.1007/s00454-005-1211-1

    Article  MathSciNet  Google Scholar 

  17. Harren, R.: Approximation algorithms for orthogonal packing problems for hypercubes. Theor. Comput. Sci. 410(44), 4504–4532 (2009). https://doi.org/10.1016/j.tcs.2009.07.030

    Article  MathSciNet  Google Scholar 

  18. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. (2009). https://doi.org/10.1155/2009/150624

  19. Hifi, M., Yousef, L.: A local search-based method for sphere packing problems. Eur. J. Oper. Res. 274(2), 482–500 (2019). https://doi.org/10.1016/j.ejor.2018.10.016

    Article  MathSciNet  Google Scholar 

  20. Jansen, K., Khan, A., Lira, M., Sreenivas, K.V.N.: A PTAS for packing hypercubes into a knapsack. In: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, Paris, France, 4–8 July 2022. LIPIcs, vol. 229, pp. 78:1–78:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.78

  21. Kabatyanskii, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space (Russian). Problemy Peredači Informacii 14, 3–25 (1978). English translation in Probl. Inf. Transm. 14, 1–17 (1978)

    Google Scholar 

  22. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper. Res. 25(4), 645–656 (2000). https://doi.org/10.1287/moor.25.4.645.12118

    Article  MathSciNet  Google Scholar 

  23. Kepler, J.: Strena seu de nive sexangula (the six-cornered snowflake) (1611)

    Google Scholar 

  24. Kim, H., Miltzow, T.: Packing segments in a simple polygon is APX-hard. In: European Conference on Computational Geometry (EuroCG 2015), pp. 24–27 (2015)

    Google Scholar 

  25. Leung, J.Y.T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990). https://doi.org/10.1016/0743-7315(90)90019-L

    Article  MathSciNet  Google Scholar 

  26. Lintzmayer, C.N., Miyazawa, F.K., Xavier, E.C.: Two-dimensional Knapsack for circles. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 741–754. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_54

    Chapter  Google Scholar 

  27. Merino, A., Wiese, A.: On the two-dimensional knapsack problem for convex polygons. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 84:1–84:16. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.84

  28. Miyazawa, F.K., Pedrosa, L.L.C., Schouery, R.C.S., Sviridenko, M., Wakabayashi, Y.: Polynomial-time approximation schemes for circle and other packing problems. Algorithmica 76, 536–568 (2015). https://doi.org/10.1007/978-3-662-44777-2_59

    Article  MathSciNet  Google Scholar 

  29. Miyazawa, F.K., Wakabayashi, Y.: Techniques and results on approximation algorithms for packing circles. São Paulo J. Math. Sci. 16(1), 585–615 (2022). https://doi.org/10.1007/s40863-022-00301-3

    Article  MathSciNet  Google Scholar 

  30. Romanova, T.E., Stetsyuk, P.I., Fischer, A., Yaskov, G.M.: Proportional packing of circles in a circular container. Cybern. Syst. Anal. 59(1), 82–89 (2023). https://doi.org/10.1007/s10559-023-00544-8

    Article  Google Scholar 

  31. Viazovska, M.: The sphere packing problem in dimension \(8\). Ann. Math. 185(3) (2017). https://doi.org/10.4007/annals.2017.185.3.7

  32. Zeng, Z., Yu, X., He, K., Huang, W., Fu, Z.: Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container. Eur. J. Oper. Res. 250(2), 615–627 (2016). https://doi.org/10.1016/j.ejor.2015.09.001

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for the valuable comments and suggestions. This research was financially supported by CNPq (grants 161030/2021-1, 163645/2021-3, 313146/2022-5) and FAPESP (grant 2022/05803-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Dell’Arriva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chagas, V.G., Dell’Arriva, E., Miyazawa, F.K. (2023). Approximation Schemes Under Resource Augmentation for Knapsack and Packing Problems of Hyperspheres and Other Shapes. In: Byrka, J., Wiese, A. (eds) Approximation and Online Algorithms . WAOA 2023. Lecture Notes in Computer Science, vol 14297. Springer, Cham. https://doi.org/10.1007/978-3-031-49815-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49815-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49814-5

  • Online ISBN: 978-3-031-49815-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics