Skip to main content

The Significance of Biomaterials in Stem Cell-Based Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine and Brain Repair

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 75))

  • 133 Accesses

Abstract

Introduction: Stem cell-based therapeutic strategies have shown tremendous potential in attenuating tissue damage and facilitating tissue repair and regeneration. The therapeutic benefits of stem cells are largely dependent on the establishment of a supportive microenvironment that optimizes cell survival, differentiation, and functional integration within host tissues. In this chapter, we will provide insight into the pivotal role of biomaterials in augmenting the therapeutic potential of cellular regenerative medicine and offer guidance for future advancements in this field. Methods: This chapter was written with the aid of comprehensive literature reviews found on PubMed and Web of Science Using Materials, Tissue Engineering, and Stem Cells, and websites dedicated to the topic of cell bioengineering. Results: Advances in biomaterials and stem cell research continue to lead to amazing discoveries. Nonetheless, it is clear that this area of research holds great promise, especially in elucidating the ability of biomaterials to enhance stem cell-intrinsic characteristics and modulate their immune microenvironment. Conclusions: Due to remarkable advancements in various disciplines, such as chemistry, materials science, and aerospace engineering, the amalgamation and advancement of biomaterials has gradually permeated the realm of stem cell therapy. These biomaterials offer dynamic and customized platforms to optimize cell-based regenerative strategies.

Meina Liu and Kai Pan are contributed equally to the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin JQ, Zhu J, Ankrum JA (2019) Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 3(2):90–104. https://doi.org/10.1038/s41551-018-0325-8

    Article  CAS  PubMed  Google Scholar 

  2. Zhao N, Yue Z, Cui J et al (2019) IGF-1C domain-modified hydrogel enhances therapeutic potential of mesenchymal stem cells for hindlimb ischemia. Stem Cell Res Ther 10(1):129. https://doi.org/10.1186/s13287-019-1230-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yao Y, Yang L, Feng LF et al (2020) IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res Ther 11(1):136. https://doi.org/10.1186/s13287-020-01637-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrzejewska A, Dabrowska S, Lukomska B et al (2021) Mesenchymal stem cells for neurological disorders. Adv Sci (Weinh) 8(7):2002944. https://doi.org/10.1002/advs.202002944

    Article  CAS  PubMed  Google Scholar 

  5. Guillamat-Prats R (2021) The role of MSC in wound healing, scarring and regeneration. Cells 10(7). https://doi.org/10.3390/cells10071729

  6. Nie Y, Zhang K, Zhang S et al (2017) Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomater 63:190–199. https://doi.org/10.1016/j.actbio.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  7. Gao J, Liu R, Wu J et al (2012) The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials 33(14):3673–3681. https://doi.org/10.1016/j.biomaterials.2012.01.061

    Article  CAS  PubMed  Google Scholar 

  8. Jia PP, Zhao XT, Liu Y et al (2022) The RGD-modified self-assembling D-form peptide hydrogel enhances the therapeutic effects of mesenchymal stem cells (MSC) for hindlimb ischemia by promoting angiogenesis. Chem Eng J 450:138004. https://doi.org/10.1016/j.cej.2022.138004

    Article  CAS  Google Scholar 

  9. Huang H, Chen S, Cheng H et al (2022) The sustained PGE2 release matrix improves neovascularization and skeletal muscle regeneration in a hindlimb ischemia model. J Nanobiotechnol 20(1):95. https://doi.org/10.1186/s12951-022-01301-3

    Article  CAS  Google Scholar 

  10. Li Q, Hou H, Li M et al (2021) CD73(+) mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front Cell Dev Biol 9:637239. https://doi.org/10.3389/fcell.2021.637239

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao X, Cui K, Li Z (2019) The role of biomaterials in stem cell-based regenerative medicine. Future Med Chem 11(14):1777–1790. https://doi.org/10.4155/fmc-2018-0347

    Article  CAS  PubMed  Google Scholar 

  12. Vardar E, Vythilingam G, Pinnagoda K et al (2019) A bioactive injectable bulking material; a potential therapeutic approach for stress urinary incontinence. Biomaterials 206:41–48. https://doi.org/10.1016/j.biomaterials.2019.03.030

    Article  CAS  PubMed  Google Scholar 

  13. Madl CM, Heilshorn SC, Blau HM (2018) Bioengineering strategies to accelerate stem cell therapeutics. Nature 557(7705):335–342. https://doi.org/10.1038/s41586-018-0089-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao X, Li Q, Guo Z et al (2021) Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 12(1):583. https://doi.org/10.1186/s13287-021-02650-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai M, Shen R, Song L et al (2016) Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci Rep 6:28250. https://doi.org/10.1038/srep28250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng G, Zhang J, Li Y et al (2016) IGF-1 C domain-modified hydrogel enhances cell therapy for AKI. J Am Soc Nephrol 27(8):2357–2369. https://doi.org/10.1681/ASN.2015050578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Zhou J, Liu Z et al (2010) Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 14(5):1044–1055. https://doi.org/10.1111/j.1582-4934.2010.01046.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao X, Duan L, Hou H et al (2020) IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE(2)-mediated M2 macrophage polarization. Theranostics 10(17):7697–7709. https://doi.org/10.7150/thno.45434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lidgerwood GE, Pitson SM, Bonder C et al (2018) Roles of lysophosphatidic acid and sphingosine-1-phosphate in stem cell biology. Prog Lipid Res 72:42–54. https://doi.org/10.1016/j.plipres.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  20. Yong KW, Choi JR, Mohammadi M et al (2018) Mesenchymal stem cell therapy for ischemic tissues. Stem Cells Int 2018:8179075. https://doi.org/10.1155/2018/8179075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He N, Zhang L, Cui J et al (2014) Bone marrow vascular niche: home for hematopoietic stem cells. Bone Marrow Res 2014:128436. https://doi.org/10.1155/2014/128436

    Article  PubMed  PubMed Central  Google Scholar 

  22. Choi JS, Harley BA (2016) Challenges and opportunities to harnessing the (hematopoietic) stem cell niche. Curr Stem Cell Rep 2(1):85–94. https://doi.org/10.1007/s40778-016-0031-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441(7097):1075–1079. https://doi.org/10.1038/nature04957

    Article  CAS  PubMed  Google Scholar 

  24. Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK et al (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4:3896. https://doi.org/10.1038/srep03896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobolak J, Dinnyes A, Memic A et al (2016) Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 99:62–68. https://doi.org/10.1016/j.ymeth.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Nie Y, Tao H et al (2018) Thakur VK, Thakur MK (eds) Hydrogel-based strategies for stem cell therapy, in hydrogels. Springer Singapore, pp 87–112

    Google Scholar 

  27. Yen BL, Hsieh CC, Hsu PJ et al (2023) Three-dimensional spheroid culture of human mesenchymal stem cells: offering therapeutic advantages and in vitro glimpses of the in vivo state. Stem Cells Transl Med 12(5):235–244. https://doi.org/10.1093/stcltm/szad011

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ho SS, Murphy KC, Binder BY et al (2016) Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med 5(6):773–781. https://doi.org/10.5966/sctm.2015-0211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  30. Kilian KA, Bugarija B, Lahn BT et al (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107(11):4872–4877. https://doi.org/10.1073/pnas.0903269107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baker SC, Rohman G, Southgate J et al (2009) The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30(7):1321–1328. https://doi.org/10.1016/j.biomaterials.2008.11.033

    Article  CAS  PubMed  Google Scholar 

  32. Misra SK, Watts PC, Valappil SP et al (2007) Poly(3- hydroxybutyrate)/bioglass(®) composite films containing carbon nanotubes. Nanotechnology 18(7):075701. https://doi.org/10.1088/0957-4484/18/7/075701

    Article  CAS  PubMed  Google Scholar 

  33. Yuan H, Kurashina K, de Bruijn JD et al (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20(19):1799–1806. https://doi.org/10.1016/s0142-9612(99)00075-7

    Article  CAS  PubMed  Google Scholar 

  34. Mao AS, Shin JW, Utech S et al (2017) Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater 16(2):236–243. https://doi.org/10.1038/nmat4781

    Article  CAS  PubMed  Google Scholar 

  35. Madl CM, Heilshorn SC (2018) Engineering hydrogel microenvironments to recapitulate the stem cell Niche. Annu Rev Biomed Eng 20:21–47. https://doi.org/10.1146/annurev-bioeng-062117-120954

    Article  CAS  PubMed  Google Scholar 

  36. Rustad KC, Wong VW, Sorkin M et al (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90. https://doi.org/10.1016/j.biomaterials.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  37. Hsueh YY, Chang YJ, Huang TC et al (2014) Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials 35(7):2234–2244. https://doi.org/10.1016/j.biomaterials.2013.11.081

    Article  CAS  PubMed  Google Scholar 

  38. Dong Y, Cui M, Qu J et al (2020) Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater 108:56–66. https://doi.org/10.1016/j.actbio.2020.03.040

    Article  CAS  PubMed  Google Scholar 

  39. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351. https://doi.org/10.1016/s0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  40. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521. https://doi.org/10.1016/s0142-9612(00)00201-5

    Article  CAS  PubMed  Google Scholar 

  41. Huang H, Chen S, Cheng H et al (2022) The sustained PGE(2) release matrix improves neovascularization and skeletal muscle regeneration in a hindlimb ischemia model. J Nanobiotechnology 20(1):95. https://doi.org/10.1186/s12951-022-01301-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  43. Nørregaard R, Kwon TH, Frøkiær J (2015) Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 34(4):194–200. https://doi.org/10.1016/j.krcp.2015.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bardhan A, Bruckner-Tuderman L, Chapple ILC et al (2020) Epidermolysis bullosa. Nat Rev Dis Primers 6(1):78. https://doi.org/10.1038/s41572-020-0210-0

    Article  PubMed  Google Scholar 

  45. Kode JA, Mukherjee S, Joglekar MV et al (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391. https://doi.org/10.1080/14653240903080367

    Article  CAS  PubMed  Google Scholar 

  46. Aday AW, Matsushita K (2021) Epidemiology of peripheral artery disease and polyvascular disease. Circ Res 128(12):1818–1832. https://doi.org/10.1161/CIRCRESAHA.121.318535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hotchkiss KM, Reddy GB, Hyzy SL et al (2016) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–434. https://doi.org/10.1016/j.actbio.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  48. Du W, Zhang K, Zhang S et al (2017) Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 133:70–81. https://doi.org/10.1016/j.biomaterials.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  49. Gao M, Su H, Lin G et al (2016) Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale 8(32):15027–15032. https://doi.org/10.1039/c6nr04439e

    Article  CAS  PubMed  Google Scholar 

  50. Hickman DA, Pawlowski CL, Sekhon UDS et al (2018) Biomaterials and advanced technologies for hemostatic management of bleeding. Adv Mater 30(4) https://doi.org/10.1002/adma.201700859

  51. Kundu B, Rajkhowa R, Kundu SC et al (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Q, Zhang K, Hu G (2016) Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 6:22431. https://doi.org/10.1038/srep22431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin X, Wu Z, Wu Y et al (2016) Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv Mater 28(6):1060–1072. https://doi.org/10.1002/adma.201502583

    Article  CAS  PubMed  Google Scholar 

  54. Uta M, Sima LE, Hoffmann P et al (2017) Development of a DsRed-expressing HepaRG cell line for real-time monitoring of hepatocyte-like cell differentiation by fluorescence imaging, with application in screening of novel geometric microstructured cell growth substrates. Biomed Microdevices 19(1):3. https://doi.org/10.1007/s10544-016-0146-z

    Article  CAS  PubMed  Google Scholar 

  55. Yi H, Xie R, Zhang Y et al (2022) Tuning microstructure and mechanical performance of a co-rich transformation-induced plasticity high entropy alloy. Materials (Basel) 15(13). https://doi.org/10.3390/ma15134611

  56. Li F, Ye Q, Gao Q et al (2019) Facile fabrication of self-healable and antibacterial soy protein-based films with high mechanical strength. ACS Appl Mater Interfaces 11(17):16107–16116. https://doi.org/10.1021/acsami.9b03725

    Article  CAS  PubMed  Google Scholar 

  57. Du W, Tao H, Zhao S et al (2015) Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie 116:43–51. https://doi.org/10.1016/j.biochi.2015.06.021

    Article  CAS  PubMed  Google Scholar 

  58. Wang C, Li G, Cui K et al (2021) Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater 122:199–210. https://doi.org/10.1016/j.actbio.2020.12.055

    Article  CAS  PubMed  Google Scholar 

  59. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  60. Chen S, Huang H, Liu Y et al (2021) Renal subcapsular delivery of PGE(2) promotes kidney repair by activating endogenous Sox9(+) stem cells. iScience 24(11):103243. https://doi.org/10.1016/j.isci.2021.103243

  61. Ba S, Lan F, Luo B et al (2023) Construction of dual-hydrophilic metal-organic framework with hierarchical porous structure for efficient glycopeptide enrichment. Talanta 259:124505. https://doi.org/10.1016/j.talanta.2023.124505

    Article  CAS  PubMed  Google Scholar 

  62. Paul E, Ochoa JC, Pechaud Y et al (2012) Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res 46(17):5499–5508. https://doi.org/10.1016/j.watres.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  63. Nakamoto M, Kitano S, Matsusaki M (2022) Biomacromolecule-fueled transient volume phase transition of a hydrogel. Angew Chem Int Ed Engl 61(33):e202205125. https://doi.org/10.1002/anie.202205125

    Article  CAS  PubMed  Google Scholar 

  64. Simão R, Lemos A, Salles B et al (2011) The influence of strength, flexibility, and simultaneous training on flexibility and strength gains. J Strength Cond Res 25(5):1333–1338. https://doi.org/10.1519/JSC.0b013e3181da85bf

    Article  PubMed  Google Scholar 

  65. Gu JD (2021) Biodegradability of plastics: the issues, recent advances, and future perspectives. Environ Sci Pollut Res Int 28(2):1278–1282. https://doi.org/10.1007/s11356-020-11501-9

    Article  PubMed  Google Scholar 

  66. Zhang K, Zhao X, Chen X et al (2018) Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces 10(36):30081–30091. https://doi.org/10.1021/acsami.8b08449

    Article  CAS  PubMed  Google Scholar 

  67. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41-56. https://doi.org/10.1002/adma.201003963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma W, Zhang X, Liu Y et al (2022) Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci (Weinh) 9(13):e2103317. https://doi.org/10.1002/advs.202103317

    Article  CAS  PubMed  Google Scholar 

  69. Li Y, Fu R, Duan Z et al (2022) Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16(5):7486–7502. https://doi.org/10.1021/acsnano.1c10575

    Article  CAS  PubMed  Google Scholar 

  70. Lou J, Stowers R, Nam S et al (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222. https://doi.org/10.1016/j.biomaterials.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  71. Gazendam A, Ekhtiari S, Bozzo A et al (2021) Intra-articular saline injection is as effective as corticosteroids, platelet-rich plasma and hyaluronic acid for hip osteoarthritis pain: a systematic review and network meta-analysis of randomised controlled trials. Br J Sports Med 55(5):256–261. https://doi.org/10.1136/bjsports-2020-102179

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (U2004126), the Tianjin Natural Science Foundation (22JCZXJC00170, 21JCZDJC00070), the Open funding from Nankai University Eye Institute (NKYKD202203), the Research Project on Skin Injury & Repair (BKJ21J016), and the Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-043A).

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Pan, K., Guo, Z., Li, Z. (2024). The Significance of Biomaterials in Stem Cell-Based Regenerative Medicine. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Regenerative Medicine and Brain Repair. Stem Cell Biology and Regenerative Medicine, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-031-49744-5_7

Download citation

Publish with us

Policies and ethics