Skip to main content

Numerical Analysis of Mixed Convection Coupled with Thermal Radiation in a Ventilated Channel Containing Various Heat-Generating Blocks

  • Conference paper
  • First Online:
Advances in Applied Mechanics (JET 2022)

Abstract

In this study, thermal radiation and mixed convection in a ventilated horizontal channel are analyzed. The channel contains five cylindrical blocks that produce different volumetric heat rates. The channel is ventilated by two openings; the inlet is located on the left wall, and the outflow is on the top one. All the channel walls are adiabatic, except for the upper wall, which is held at a constant low temperature of TC = 20 ℃. To numerically solve the differential equations governing the current problem, a numerical code based on the finite volume approach and the SIMPLE algorithm is utilized. The discrete ordinate method is used to discretize the radiative transfer equation. The impacts of the Reynolds number and the emissivity of the surfaces on the heat transfer and fluid flow are analyzed. The numerical simulations indicate that increasing the Reynolds number or the emissivity considerably decreases the maximum temperature in the cavity and improves the performance of the considered system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(d\):

cylinders diameter, \(\mathrm{m}\)

\(D\):

cylinders diameter \(D= d/H\)

\(g\):

gravitational acceleration, \({\mathrm{ms}}^{-2}\)

\({h}^{*}\):

openings size \({h}^{*}= h/H\)

\(h\):

openings size, \(\mathrm{m}\)

\(H\):

cavity’s height, \(\mathrm{m}\)

\(i\):

radiation intensity, \({\mathrm{Wm}}^{-2}\)

\(I\):

dimensionless intensity

\(k\):

thermal conductivity, \({\mathrm{Wm}}^{-1}{\mathrm{K}}^{-1}\)

\(K\):

conductivity ratio \(K = {k}_{S}/{k}_{f}\)

\(L\):

cavity’s length, \(\mathrm{m}\)

\(\mathrm{Nu}\):

Nusselt number

\(\mathrm{Pr}\):

Prandtl number

Pl:

Planck number

\(P\):

dimensionless pressure

\(Q\):

internal heat generation, \({\mathrm{Wm}}^{-3}\)

\(\mathrm{Ri}\):

Richardson number

\(\mathrm{Re}\):

Reynolds number

\(\mathrm{Ra}\):

Rayleigh number

\({T}_{R}\):

temperature ratio

\(T\):

dimensional temperature, \(^\circ \mathrm{C}\)

\(t\):

time, \(\mathrm{s}\)

\(U\), \(V\):

velocity components

\(X\), \(Y\):

Cartesian coordinates

\(\sigma \):

Stefan-Boltzmann constant, \({\mathrm{Wm}}^{-2}{\mathrm{K}}^{-4}\)

\(\alpha \):

thermal diffusivity, \({\mathrm{m}}^{2}{\mathrm{s}}^{-1}\)

\(\beta \):

thermal expansion coefficient, \({\mathrm{K}}^{-1}\)

\(\varepsilon \):

emissivity of radiative surface

\(\omega \):

scattering albedo

\(\phi \):

phase function

\(\theta \):

dimensionless temperature

\(\upsilon \):

kinematic viscosity, \({\mathrm{m}}^{2}{\mathrm{s}}^{-1}\)

\(\Omega \):

solid angle, \(\mathrm{sr}\)

\(\lambda \):

heat generation parameter

\(\rho \):

density, \({\mathrm{kgm}}^{-3}\)

\(\tau \):

dimensionless time

\(\mu \), \(\eta \):

direction cosines

\({\tau }^{*}\):

optical thickness

\(\psi \):

dimensionless stream function

\(\mathrm{C}\):

convective term, cell, or cold wall

\(\mathrm{f}\):

fluid

\(\mathrm{i}\):

block index

in:

inlet

\(\mathrm{LR}\):

local radiative

\(\mathrm{LC}\):

local convective

\(\mathrm{max}\):

maximum

\(\mathrm{R}\):

radiative

\(\mathrm{s}\):

solid (blocks)

\(\mathrm{T}\):

total

B:

block

References

  1. Pandey, S., Park, Y.G., Ha, M.Y.: An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int. J. Heat Mass Transf. 138, 762–795 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.097

    Article  Google Scholar 

  2. Rao, G.M., Narasimham, G.S.V.L.: Laminar conjugate mixed convection in a vertical channel with heat generating components. Int. J. Heat Mass Transf. 50, 3561–3574 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.030

    Article  Google Scholar 

  3. Hidki, R., El Moutaouakil, L., Boukendil, M., Charqui, Z., Zrikem, Z., Abdelbaki, A.: Impact of Cu, Al2O3-water hybrid nanofluid on natural convection inside a square cavity with two heat-generating bodies. Mater. Today Proc. 72, 3749–3756 (2023). https://doi.org/10.1016/j.matpr.2022.09.292

    Article  Google Scholar 

  4. Hidki, R., El Moutaouakil, L., Boukendil, M., Charqui, Z., Zrikem, Z., Abdelbaki, A.: Natural convection coupled to surface radiation in an air-filled square cavity containing two heat-generating bodies. Heat Transf. (2022). https://doi.org/10.1002/HTJ.22778

    Article  Google Scholar 

  5. Hidki, R., El Moutaouakil, L., Boukendil, M., Charqui, Z., Zrikem, Z.: Mixed-convection coupled with thermal-radiation in a ventilated horizontal channel containing different electronic components. J. Thermophys. Heat Transf. 37(3), 690–696 (2023). https://doi.org/10.2514/1.T6659

    Article  Google Scholar 

  6. Chamkha, A.J., Hussain, S.H., Abd-Amer, Q.R.: Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder. Numer. Heat Transf. Part A Appl. 59, 58–79 (2011). https://doi.org/10.1080/10407782.2011.541216

    Article  Google Scholar 

  7. Javadzadegan, A., Joshaghani, M., Moshfegh, A., Akbari, O.A., Afrouzi, H.H., Toghraie, D.: Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: an LBM approach. Phys. A Stat. Mech. its Appl. 537, 122439 (2020). https://doi.org/10.1016/J.PHYSA.2019.122439

    Article  MathSciNet  Google Scholar 

  8. Ahammad, M.U., Rahman, M.M., M. L. Rahman: Mixed convection flow and heat transfer behavior inside a vented enclosure in the presence of heat generating obstacle. Int. J. Innov. Appl. Stud. 3, 967–978 (2013)

    Google Scholar 

  9. Ahammad, M.U., Rahman, M.M., Rahman, M.L.: A Study on the governing parameters of mhd mixed convection problem in a ventilated cavity containing a centered square block. Int. J. Sci. Technol. Res. 3, 273–281 (2014)

    Google Scholar 

  10. Rahman, M., Alim, M.A., Saha, S., Chowdhury, M.K.: Mixed convection in a vented square cavity with a heat conducting horizontal solid circular cylinder. J. Nav. Archit. Mar. Eng. 5, 37–46 (2009). https://doi.org/10.3329/jname.v5i2.2504

    Article  Google Scholar 

  11. Rahman, M.M., Billah, M.M., Alim, M.A.: Effect of reynolds and prandtl numbers on mixed convection in an obstructed vented cavity. J. Sci. Res. 3, 271–281 (2011). https://doi.org/10.3329/jsr.v3i2.4344

    Article  Google Scholar 

  12. Gupta, S.K., Chatterjee, D., Mondal, B.: Investigation of mixed convection in a ventilated cavity in the presence of a heat conducting circular cylinder. Numer. Heat Transf. Part A Appl. 67, 52–74 (2015). https://doi.org/10.1080/10407782.2014.916113

    Article  Google Scholar 

  13. Pirouz, M.M., Farhadi, M., Sedighi, K., Nemati, H., Fattahi, E.: Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Sci. Iran. 18, 213–221 (2011). https://doi.org/10.1016/j.scient.2011.03.016

    Article  Google Scholar 

  14. Ghaneifar, M., Raisi, A., Ali, H.M., Talebizadehsardari, P.: Mixed convection heat transfer of AL2O3 nanofluid in a horizontal channel subjected with two heat sources. J. Therm. Anal. Calorim. 143, 2761–2774 (2021). https://doi.org/10.1007/s10973-020-09887-2

    Article  Google Scholar 

  15. Hamouche, A., Bessaïh, R.: Mixed convection air cooling of protruding heat sources mounted in a horizontal channel. Int. Commun. Heat Mass Transf. 36, 841–849 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.04.009

    Article  Google Scholar 

  16. Boutina, L., Bessaïh, R.: Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel. Appl. Therm. Eng. 31, 2052–2062 (2011). https://doi.org/10.1016/j.applthermaleng.2011.03.021

    Article  Google Scholar 

  17. Hssain, M.A., Mir, R., El Hammami, Y.: Numerical simulation of the cooling of heated electronic blocks in horizontal channel by mixed convection of nanofluids. J. Nanomater. 2020, 1–11 (2020). https://doi.org/10.1155/2020/4187074

    Article  Google Scholar 

  18. Sivaraj, C., Miroshnichenko, I.V., Sheremet, M.A.: Influence of thermal radiation on thermogravitational convection in a tilted chamber having heat-producing solid body. Int. Commun. Heat Mass Transf. 115, 104611 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104611

    Article  Google Scholar 

  19. Saravanan, S., Sivaraj, C.: Combined thermal radiation and natural convection in a cavity containing a discrete heater: effects of nature of heating and heater aspect ratio. Int. J. Heat Fluid Flow 66, 1339–1351 (2017). https://doi.org/10.1016/j.ijheatfluidflow.2017.05.004

    Article  Google Scholar 

  20. Ahmed Mezrhab, M.A., Moussaoui, H.N.: Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder. J. Phys. D Appl. Phys. 41(11), 115502 (2008). https://doi.org/10.1088/0022-3727/41/11/115502

    Article  Google Scholar 

  21. Mezrhab, A., Bouali, H., Abid, C.: Modeling of combined radiative and convective heat transfer in an enclosure with a heat-generating conducting body. Int. J. Comput. Methods 02, 431–450 (2005). https://doi.org/10.1142/S0219876205000521

    Article  Google Scholar 

  22. Hidki, R., Moutaouakil, L.E., Boukendil, M., Charqui, Z., Abdelbaki, A.: Natural Convection and Surface Radiation in an Inclined Square Cavity with Two Heat-Generating Blocks. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2021. LNNS, vol. 371, pp. 948–957. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93247-3_90

    Chapter  Google Scholar 

  23. Mandal, S.K., Deb, A., Sen, D.: A computational study on mixed convection with surface radiation in a channel in presence of discrete heat sources and vortex generator based on RSM. J. Therm. Anal. Calorim. 141, 2239–2251 (2020). https://doi.org/10.1007/s10973-020-09774-w

    Article  Google Scholar 

  24. Peiravi, M.M., Alinejad, J.: Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder. J. Therm. Anal. Calorim. 140, 2733–2747 (2020). https://doi.org/10.1007/s10973-019-09010-0

    Article  Google Scholar 

  25. Habchi, S., Acharya, S.: Laminar mixed convection in a partially blocked, vertical channel. Int. J. Heat Mass Transf. 29, 1711–1722 (1986). https://doi.org/10.1016/0017-9310(86)90111-0

    Article  Google Scholar 

  26. Hidki, R., El Moutaouakil, L., Boukendil, M., Charqui, Z., Zrikem, Z., Abdelbaki, A.: Mixed convection and surface radiation in a ventilated cavity containing two heat-generating solid bodies. Mater. Today Proc. 66, 318–324 (2022). https://doi.org/10.1016/j.matpr.2022.05.404

    Article  Google Scholar 

  27. El Moutaouakil, L., Boukendil, M., Zrikem, Z., Abdelbaki, A.: Natural convection and radiation in a cavity with a partially heated cylinder. J. Thermophys. Heat Transf. 35, 312–322 (2021). https://doi.org/10.2514/1.T6097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Boukendil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hidki, R., El Moutaouakil, L., Boukendil, M., Charqui, Z., Zrikem, Z., Abdelbaki, A. (2024). Numerical Analysis of Mixed Convection Coupled with Thermal Radiation in a Ventilated Channel Containing Various Heat-Generating Blocks. In: Azari, Z., El Had, K., Ait Ali, M.E., El Mahi, A., Chaari, F., Haddar, M. (eds) Advances in Applied Mechanics. JET 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-49727-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49727-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49726-1

  • Online ISBN: 978-3-031-49727-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics