Skip to main content

Augmenting the Human in Industry 4.0 to Add Value: A Taxonomy of Human Augmentation Approach

  • Conference paper
  • First Online:
Computer-Human Interaction Research and Applications (CHIRA 2023)

Abstract

There is a lack of clarity about how to augment the human in manufacturing. For practitioners, this creates challenges in understanding which technologies to invest in for specific automation goals, and where the value-add exists.

A narrative review of the literature is conducted through which the relationship between augmentation and automation is clarified. Definitions for Augmentation, and the Augmented Human, and a new Taxonomy of Human Augmentation are proposed.

Five classes of augmentation are identified: Physical, Collaborative Physical, Sensory, Embedded Intelligence, and Collaborative Social Intelligence. How the Taxonomy is applied to each goal of automation is illustrated. Finally the value-add of the classes is explored through industrial use cases, and the potential impact on manufacturing key performance indicators is summarised.

This novel Taxonomy of Human Augmentation unifies the existing research, and provides a common description of each class of augmentation, which can assist practitioners in seeking and exploring augmentation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitts, P.: Human Engineering for an Effective Air-navigation and Traffic-control. National Research, London (1951)

    Google Scholar 

  2. de Winter, J.C.F., Dodou, D.: Why the fitts list has persisted throughout the history of function allocation. Cogn. Technol. Work 16, 1–11 (2014). https://doi.org/10.1007/s10111-011-0188-1

    Article  Google Scholar 

  3. Licklider JCR: Man-Computer Symbiosis. IRE Trans Hum Factors Electron HFE-1, 4–11 (1960). https://doi.org/10.1109/THFE2.1960.4503259

  4. Moencks, M., Roth, E., Bohné, T., et al.: Augmented Workforce Canvas: a management tool for guiding human-centric, value-driven human-technology integration in industry. Comput. Ind. Eng. 163, 107803 (2022). https://doi.org/10.1016/j.cie.2021.107803

    Article  Google Scholar 

  5. Zolotová, I., Papcun, P., Kajáti, E., et al.: Smart and cognitive solutions for Operator 4.0: Laboratory H-CPPS case studies. Comput Ind Eng 139, 105471 (2020). https://doi.org/10.1016/j.cie.2018.10.032

  6. Fässberg, T., Fasth, Å., Stahre, J.: A classification of carrier and content of information. Proc 4th CIRP Conf Assem Technol Syst 1–4 (2012)

    Google Scholar 

  7. Krugh, M., Mears, L.: A complementary cyber-human systems framework for industry 4.0 cyber-physical systems. Manuf. Lett. 15, 89–92 (2018). https://doi.org/10.1016/j.mfglet.2018.01.003

    Article  Google Scholar 

  8. Maettig, B., Foot, H.: Approach to improving training of human workers in industrial applications through the use of Intelligence Augmentation and Human-in-the-Loop. In: 2020 15th International Conference on Computer Science & Educ. (ICCSE). IEEE, pp. 283–288 (2020)

    Google Scholar 

  9. Kadir, B.A., Broberg, O., Conceição, C.S. da: Current research and future perspectives on human factors and ergonomics in Industry 4.0. Comput Ind Eng 137, 106004 (2019). https://doi.org/10.1016/j.cie.2019.106004

  10. Pfeiffer, S (2016) Robots, Industry 4.0 and Humans, or Why Assembly Work Is More than Routine Work. Societies 6:16. https://doi.org/10.3390/soc6020016

  11. Su, Q., Liu, L., Whitney, D.E.: A systematic study of the prediction model for operator-induced assembly defects based on assembly complexity factors. IEEE Trans. Syst. Man, Cybern. - Part A Syst. Hum. 40, 107–120 (2010). https://doi.org/10.1109/TSMCA.2009.2033030

    Article  Google Scholar 

  12. Zheng, N., Liu, Z., Ren, P., et al.: Hybrid-augmented intelligence: collaboration and cognition. Front. Inf. Technol. Electron. Eng. 18, 153–179 (2017). https://doi.org/10.1631/FITEE.1700053

    Article  Google Scholar 

  13. Neumann, W.P., Winkelhaus, S., Grosse, E.H., Glock, C.H.: Industry 4.0 and the human factor – a systems framework and analysis methodology for successful development. Int. J. Prod. Econ. 233, 107992 (2021). https://doi.org/10.1016/j.ijpe.2020.107992

  14. Fantini, P., Pinzone, M., Taisch, M.: Placing the operator at the centre of Industry 4.0 design: modelling and assessing human activities within cyber-physical systems. Comput. Ind. Eng. 139, 105058 (2020). https://doi.org/10.1016/j.cie.2018.01.025

  15. Romero, D., Bernus, P., Noran, O., et al.: The operator 4.0: human cyber-physical systems, adaptive automation towards human-automation symbiosis work systems. In: Advances in Production Man. Systems. Initiatives for a Sustainable World, pp. 677–686 (2016)

    Google Scholar 

  16. Davenport, T.H., Kirby, J.: Only humans need apply: winners and losers in the age of smart machines. Harper Business (2016)

    Google Scholar 

  17. Mattsson, S., Fast-Berglund, Ã…., Li, D., Thorvald, P.: Forming a cognitive automation strategy for operator 4.0 in complex assembly. Comput. Ind. Eng. 139 (2020). https://doi.org/10.1016/j.cie.2018.08.011

  18. Dolgui, A., Sgarbossa, F., Simonetto, M.: Design and management of assembly systems 4.0: systematic literature review and research agenda. Int. J. Prod. Res. 60, 184–210 (2022). https://doi.org/10.1080/00207543.2021.1990433

    Article  Google Scholar 

  19. Dornelles, J.de A., Ayala, N.F., Frank, A.G.: Smart working in industry 4.0: how digital technologies enhance manufacturing workers’ activities. Comput. Ind. Eng. 163, 107804 (2022). https://doi.org/10.1016/j.cie.2021.107804

  20. Engelbart, D.C.: Augmenting human intellect: a conceptual framework (1962)

    Google Scholar 

  21. Raisamo, R., Rakkolainen, I., Majaranta, P., et al.: Human augmentation: past, present and future. Int. J. Hum. Comput. Stud. 131, 131–143 (2019). https://doi.org/10.1016/j.ijhcs.2019.05.008

    Article  Google Scholar 

  22. Romero, D., Stahre, J., Wuest, T., et al.: Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: Proceedings of the International Conference on Computers and Industrial Engineering, pp 1–11 (2016)

    Google Scholar 

  23. Raisch, S., Krakowski, S.: Artificial intelligence and management: the automation–augmentation paradox. Acad. Manag. Rev. 46, 192–210 (2021). https://doi.org/10.5465/amr.2018.0072

    Article  Google Scholar 

  24. Davenport, T.H., Kirby, J.: Beyond Automation. Harv. Bus. Rev (2015)

    Google Scholar 

  25. Pirmagomedov, R., Koucheryavy, Y.: IoT technologies for augmented human: a survey. Internet of Things 14, 100120 (2021). https://doi.org/10.1016/j.iot.2019.100120

    Article  Google Scholar 

  26. De Boeck, M., Vaes, K.: Structuring human augmentation within product design. Proc. Des. Soc. 1, 2731–2740 (2021). https://doi.org/10.1017/pds.2021.534

    Article  Google Scholar 

  27. Lee, J., Kim, E., Yu, J., et al.: Holistic quantified self framework for augmented human, pp 188–201 (2018)

    Google Scholar 

  28. Longo, F., Nicoletti, L., Padovano, A.: New perspectives and results for smart operators in industry 4.0: a human-centered approach. Comput. Ind. Eng. 163, 107824 (2022). https://doi.org/10.1016/j.cie.2021.107824

  29. Cimini, C., Pirola, F., Pinto, R., Cavalieri, S.: A human-in-the-loop manufacturing control architecture for the next generation of production systems. J. Manuf. Syst. 54, 258–271 (2020). https://doi.org/10.1016/j.jmsy.2020.01.002

    Article  Google Scholar 

  30. Wandke, H.: Assistance in human–machine interaction: a conceptual framework and a proposal for a taxonomy. Theor. Issues Ergon. Sci. 6, 129–155 (2005). https://doi.org/10.1080/1463922042000295669

    Article  Google Scholar 

  31. Thorvald, P., Fast Berglund, Ã…., Romero, D.: The Cognitive Operator 4.0 (2021)

    Google Scholar 

  32. Casla, P., Larreina, J., Fletcher, S., et al.: Human-centered factories from theory to industrial practice. Lessons learned and recommendations (2019)

    Google Scholar 

  33. Jiao, J., Zhou, F., Gebraeel, N.Z., Duffy, V.: Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. Int. J. Prod. Res. 58, 5089–5111 (2020). https://doi.org/10.1080/00207543.2020.1722324

    Article  Google Scholar 

  34. Huber, J., Shilkrot, R., Maes, P., Nanayakkara, S.: Assistive augmentation (Cognitive Science and Technology), 1st ed. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6404-3

  35. Maier, M., Ebrahimzadeh, A., Chowdhury, M.: The tactile internet: automation or augmentation of the human? IEEE Access 6, 41607–41618 (2018). https://doi.org/10.1109/ACCESS.2018.2861768

    Article  Google Scholar 

  36. Garcia, M.A.R., Rojas, R., Gualtieri, L., et al.: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing. Procedia CIRP 81, 600–605 (2019). https://doi.org/10.1016/j.procir.2019.03.162

    Article  Google Scholar 

  37. Longo, F., Nicoletti, L., Padovano, A.: Smart operators in industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 113, 144–159 (2017). https://doi.org/10.1016/j.cie.2017.09.016

    Article  Google Scholar 

  38. European Factories of the Future Research Association: HuMan Project Tests Exoskeletons (2017). https://www.effra.eu/project-news/human-project-tests-exoskeletons. Accessed 1 Nov 2022

  39. Al-Amin, M., Qin, R., Tao, W., et al.: Fusing and refining convolutional neural network models for assembly action recognition in smart manufacturing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236, 2046–2059 (2022). https://doi.org/10.1177/0954406220931547

    Article  Google Scholar 

  40. A4blue (2016). https://a4blue.eu/. Accessed 1 Nov 2022

  41. Winkelhaus, S., Zhang, M., Grosse, E.H., Glock, C.H.: Hybrid order picking: a simulation model of a joint manual and autonomous order picking system. Comput. Ind. Eng. 167, 107981 (2022). https://doi.org/10.1016/j.cie.2022.107981

    Article  Google Scholar 

  42. Burresi, G., Lorusso, M., Graziani, L., et al.: Image-based defect detection in assembly line with machine learning. In: 2021 10th Mediterranean Conference on Embedded Computing (MECO), pp 1–5. IEEE (2021)

    Google Scholar 

  43. Knoch, S., Herbig, N., Ponpathirkoottam, S., et al.: Sensor-based human-process interaction in discrete manufacturing. J. Data Semant. 9, 21–37 (2020). https://doi.org/10.1007/s13740-019-00109-z

    Article  Google Scholar 

  44. Kristiansen, E., Nielsen, E.K., Hansen, L., Bourne, D.: A novel strategy for automatic error classification and error recovery for robotic assembly in flexible production. J. Intell. Robot. Syst. 100, 863–877 (2020). https://doi.org/10.1007/s10846-020-01248-3

    Article  Google Scholar 

  45. Hancock, P.A., Jagacinski, R.J., Parasuraman, R., et al.: Human-automation interaction research. Ergon. Des. Q. Hum. Fact. Appl. 21, 9–14 (2013). https://doi.org/10.1177/1064804613477099

    Article  Google Scholar 

  46. Bicho, E., Erlhagen, W., Louro, L., et al.: A dynamic field approach to goal inference, error detection and anticipatory action selection in human-robot collaboration. New Front. Hum.-Robot Interact., 135–164 (2011)

    Google Scholar 

  47. Frohm, J., Lindström, V., Stahre, J., Winroth, M.: Levels of automation in manufacturing. Ergon. Int. J. Ergon. Hum. factors 30(3) (2008)

    Google Scholar 

  48. Draper, J.V.: Teleoperators for advanced manufacturing: applications and human factors challenges. Int. J. Hum. Fact. Manuf. 5, 53–85 (1995). https://doi.org/10.1002/hfm.4530050105

    Article  Google Scholar 

  49. Fereidunian, A., Lehtonen, M., Lesani, H., et al.: Adaptive autonomy: smart cooperative cybernetic systems for more humane automation solutions. In: 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp 202–207 (2007)

    Google Scholar 

  50. Vagia, M., Transeth, A.A., Fjerdingen, S.A.: A literature review on the levels of automation during the years. What are the different taxonomies that have been proposed? Appl. Ergon. 53, 190–202 (2016). https://doi.org/10.1016/j.apergo.2015.09.013

    Article  Google Scholar 

  51. Parasuraman, R., Sheridan, T., Wickens, C.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern., 286–297 (2000)

    Google Scholar 

  52. Afroz, A.S., Inglese, F., Stefanini, C., Milazzo, M.: STL_Process: A .STL-based preprocessor for robot path planning in manufacturing and quality control processes. SoftwareX 15, 100725 (2021). https://doi.org/10.1016/j.softx.2021.100725

  53. Mittal, S., Khan, M.A., Romero, D., Wuest, T.: A critical review of smart manufacturing and Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs). J. Manuf. Syst. 49, 194–214 (2018). https://doi.org/10.1016/j.jmsy.2018.10.005

    Article  Google Scholar 

  54. Gürerk, Ö., Bohné, T.M., Alvarez Alonso, G.: Productivity and learning effects of head-mounted AR displays on human-centered work. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3264118

    Article  Google Scholar 

  55. Kamble, S.S., Gunasekaran, A., Gawankar, S.A.: Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process. Saf. Environ. Prot. 117, 408–425 (2018). https://doi.org/10.1016/j.psep.2018.05.009

    Article  Google Scholar 

  56. Liu, Z., Wang, J.: Human-cyber-physical systems: concepts, challenges, and research opportunities. Front. Inf. Technol. Electron. Eng. 21, 1535–1553 (2020). https://doi.org/10.1631/FITEE.2000537

    Article  Google Scholar 

  57. Zhang, M., Liu, W., Tang, X., et al.: Human-cyber-physical automata and their synthesis, pp. 36–41 (2022)

    Google Scholar 

  58. Cunningham, J.: Human and not too human. In: Dharamsi, K., Clemis, D. (eds.) Liberal Education: Analog Dreams in a Digital Age, pp. 61–84. Vernon Press, Delaware, United States (2023). https://doi.org/10.1007/s41245-023-00169-x

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is co-funded by the Enterprise Ireland and European Regional Development Fund (ERDF) under Ireland’s European Structural and Investment Funds (ESI) Programmes 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Humphries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Humphries, J., Van de Ven, P., Ryan, A. (2023). Augmenting the Human in Industry 4.0 to Add Value: A Taxonomy of Human Augmentation Approach. In: da Silva, H.P., Cipresso, P. (eds) Computer-Human Interaction Research and Applications. CHIRA 2023. Communications in Computer and Information Science, vol 1996. Springer, Cham. https://doi.org/10.1007/978-3-031-49425-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49425-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49424-6

  • Online ISBN: 978-3-031-49425-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics