Skip to main content

Enhancing Semantic Image Synthesis: A GAN-Based Approach with Multi-Feature Adaptive Denormalization Layer

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2023)

Abstract

Semantic image synthesis, a pivotal task in image-to-image translation, has been widely addressed using generative adversarial network (GAN) models. However, existing GAN-based approaches often suffer from inadequate incorporation of structural and spatial information, resulting in unsatisfactory quality of the synthesized images and a pronounced disparity between photo-realistic and generated images. In this paper, we propose a novel GAN-based methodology to address these limitations, enabling the generation of high-resolution images from semantic label maps while bridging the quality gap and preserving detailed information in the generated outputs. The proposed approach leverages a two-step process, starting with a local binary pattern convolutional generator that produces a local binary pattern feature map. Subsequently, a global convolutional generator is fed with the segmentation map and the feature map through a learned modulation scheme facilitated by a multi-feature adaptive denormalization layer (MFADE) during the training process to generate photo-realistic images. Extensive experiments using Cityscapes, ADE20K, and COCO-stuff datasets validate the performance of our proposed method and showcase its accuracy and robustness in addressing semantic image synthesis tasks, thereby paving the way for its potential applications in enhancing urban sensing and data analytics in Smart Cities. The source code is available at https://github.com/karimmagdy/ULBPGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kingma, D.P., Welling, M.: Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114 (2013)

  2. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems, pp. 3581–3589 (2014)

    Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  4. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  5. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009 )

    Google Scholar 

  6. Bengio, Y., Laufer, E., Alain, G., Yosinski, J.: Deep generative stochastic networks trainable by backprop. In: International Conference on Machine Learning, pp. 226–234 (2014)

    Google Scholar 

  7. Karim Magdy, G.K., Abbas, H.: Semantic image synthesis manipulation for stability problem using generative adversarial networks A survey. Comput. Inf. Bull. (2021)

    Google Scholar 

  8. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Wang, T.-C., Liu, M.-Y., Zhu,J.-Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8798–8807 (2018)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019)

    Google Scholar 

  13. Liu, X., Yin, G., Shao, J., Wang, X., et al.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: Advances in Neural Information Processing Systems, pp. 570–580 (2019)

    Google Scholar 

  14. Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: You only need adversarial supervision for semantic image synthesis. arXiv preprint arXiv:2012.04781 (2020)

  15. Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4852–4866 (2021)

    Google Scholar 

  16. Wang, Y., Qi, L., Chen, Y.-C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13 749–13 758 (2021)

    Google Scholar 

  17. Tan, Z., et al.: Diverse semantic image synthesis via probability distribution modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7962–7971 (2021)

    Google Scholar 

  18. Shi, Y., Liu, X., Wei, Y., Wu, Z., Zuo, W.: Retrieval-based spatially adaptive normalization for semantic image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11 224–11 233 (2022)

    Google Scholar 

  19. Wang, W., et al.: Semantic image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  21. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  22. Ulyanov, D., Vedaldi, A., Lempitsky, A.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  24. Krizhevsky, A., Sutskever, I. Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: Sean: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5104–5113 (2020)

    Google Scholar 

  26. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  27. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  28. Jia, S., Deng, B., Zhu, J., Jia, X., Li, Q.: Local binary pattern-based hyperspectral image classification with superpixel guidance. IEEE Trans. Geosci. Remote Sens. 56(2), 749–759 (2017)

    Article  Google Scholar 

  29. Wu, H., Zhou, J.: Privacy leakage of sift features via deep generative model based image reconstruction. arXiv preprint arXiv:2009.01030 (2020)

  30. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  31. Dhingra, S., Bansal, P.: Experimental analogy of different texture feature extraction techniques in image retrieval systems. Multimedia Tools Appl 79(37), 27391–27406 (2020)

    Article  Google Scholar 

  32. Wei, X., Yu, X., Liu, B., Zhi, L.: Convolutional neural networks and local binary patterns for hyperspectral image classification. Eur. J. Remote Sens. 52(1), 448–462 (2019)

    Article  Google Scholar 

  33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  34. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  35. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  36. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

  37. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)

    Google Scholar 

Download references

Acknowledgments

We acknowledge BA-HPC, The Bibliotheca Alexandrina High-Performance Computing, for their facility that offers us merit-based access to a High-Performance Computing cluster to conduct our experiments.

Funding

“This research received no external funding”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Magdy .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

Declare conflicts of interest or state “The authors declare no conflict of interest.”

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magdy, K., Khoriba, G., Abbas, H. (2024). Enhancing Semantic Image Synthesis: A GAN-Based Approach with Multi-Feature Adaptive Denormalization Layer. In: Mosbah, M., Kechadi, T., Bellatreche, L., Gargouri, F. (eds) Model and Data Engineering. MEDI 2023. Lecture Notes in Computer Science, vol 14396. Springer, Cham. https://doi.org/10.1007/978-3-031-49333-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49333-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49332-4

  • Online ISBN: 978-3-031-49333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics