Skip to main content

Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Abstract

The class of Galled-Tree Explainable (GaTEx) graphs has just recently been discovered as a natural generalization of cographs. Cographs are precisely those graphs that can be uniquely represented by a rooted tree where the leaves of the tree correspond to the vertices of the graph. As a generalization, GaTEx graphs are precisely those graphs that can be uniquely represented by a particular rooted directed acyclic graph (called galled-tree).

We consider here four prominent problems that are, in general, NP-hard: computing the size \(\omega (G)\) of a maximum clique, the size \(\chi (G)\) of an optimal vertex-coloring and the size \(\alpha (G)\) of a maximum independent set of a given graph G as well as determining whether a graph is perfectly orderable. We show here that \(\omega (G)\), \(\chi (G)\), \(\alpha (G)\) can be computed in linear-time for GaTEx graphs G. The crucial idea for the linear-time algorithms is to avoid working on the GaTEx graphs G directly, but to use the galled-trees that explain G as a guide for the algorithms to compute these invariants. In particular, we show first how to employ the galled-tree structure to compute a perfect ordering of GaTEx graphs in linear-time which is then used to determine \(\omega (G)\), \(\chi (G)\), \(\alpha (G)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999). https://doi.org/10.1089/106652799318274. pMID: 10582567

    Article  Google Scholar 

  2. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 6, 552–569 (2007)

    Article  Google Scholar 

  3. Chvátal, V.: Perfectly ordered graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. North-Holland Mathematics Studies, vol. 88, pp. 63–65. North-Holland (1984). https://doi.org/10.1016/S0304-0208(08)72923-2. https://www.sciencedirect.com/science/article/pii/S0304020808729232

  4. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.K.: Complement reducible graphs. Discr. Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985). https://doi.org/10.1137/0214065

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41(2), 360–387 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part I: clans, basic subclasses, and morphisms. Theor. Comp. Sci. 70, 277–303 (1990)

    Article  MATH  Google Scholar 

  8. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part II: representation through labeled tree families. Theor. Comp. Sci. 70, 305–342 (1990)

    Article  MATH  Google Scholar 

  9. Ehrenfeucht, A., Gabow, H.N., Mcconnell, R.M., Sullivan, S.J.: An O(\(n^2\)) divide-and-conquer algorithm for the prime tree decomposition of two-structures and modular decomposition of graphs. J. Algorithms 16(2), 283–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)

    Google Scholar 

  11. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  12. Hellmuth, M., Schaller, D., Stadler, P.F.: Clustering systems of phylogenetic networks. Theory Biosci. (2023). https://doi.org/10.1007/s12064-023-00398-w

    Article  MATH  Google Scholar 

  13. Hellmuth, M., Scholz, G.E.: From modular decomposition trees to level-1 networks: pseudo-cographs, polar-cats and prime polar-cats. Discret. Appl. Math. 321, 179–219 (2022). https://doi.org/10.1016/j.dam.2022.06.042

    Article  MathSciNet  MATH  Google Scholar 

  14. Hellmuth, M., Scholz, G.E.: Linear time algorithms for NP-hard problems restricted to GaTEx graphs (2023). arXiv:2306.04367

  15. Hellmuth, M., Scholz, G.E.: Resolving prime modules: the structure of pseudo-cographs and galled-tree explainable graphs (2023). arXiv:2211.16854

  16. Hellmuth, M., Stadler, P.F., Wieseke, N.: The mathematics of xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. J. Math. Biol. 75(1), 199–237 (2017). https://doi.org/10.1007/s00285-016-1084-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Huber, K.T., Scholz, G.E.: Beyond representing orthology relations with trees. Algorithmica 80(1), 73–103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949). https://doi.org/10.1007/BF02289146

    Article  MathSciNet  Google Scholar 

  19. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electr. Eng. 48, 11–16 (2004)

    Google Scholar 

  20. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discret. Math. 201(1–3), 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Middendorf, M., Pfeiffer, F.: On the complexity of recognizing perfectly orderable graphs. Discret. Math. 80(3), 327–333 (1990). https://doi.org/10.1016/0012-365X(90)90251-C. https://www.sciencedirect.com/science/article/pii/0012365X9090251C

  22. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003). https://doi.org/10.1073/pnas.2032324100

    Article  Google Scholar 

  23. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_52

    Chapter  Google Scholar 

  24. Turau, V., Weyer, C.: Algorithmische Graphentheorie. De Gruyter, Berlin, München, Boston (2015). https://doi.org/10.1515/9783110417326

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume E. Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hellmuth, M., Scholz, G.E. (2024). Linear Time Algorithms for NP-Hard Problems Restricted to GaTEx Graphs. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14422. Springer, Cham. https://doi.org/10.1007/978-3-031-49190-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49190-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49189-4

  • Online ISBN: 978-3-031-49190-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics