Skip to main content

Self-stabilizing \((\varDelta +1)\)-Coloring in Sublinear (in \(\varDelta \)) Rounds via Locally-Iterative Algorithms

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14422))

Included in the following conference series:

  • 307 Accesses

Abstract

Fault-tolerance is a central theme in distributed computing. Self-stabilization is a key property that guarantees a distributed system starting from an arbitrary state eventually converges to a desired behavior. Such strong level of fault-tolerance is often desirable due to the error-prone nature of distributed systems. Developing fast and robust coloring algorithms has been a central topic in the study of distributed graph algorithms. In this paper, we give a \((\varDelta +1)\)-coloring algorithm with \(O(\varDelta ^{3/4}\log \varDelta )+\log ^*{n}\) stabilization time, only using messages of size \(O(\log {n})\), on input graphs of n vertices and maximum degree \(\varDelta \). This is the first self-stabilizing \((\varDelta +1)\)-coloring algorithm with sublinear-in-\(\varDelta \) stabilization time. The key building block of our algorithm is a new locally-iterative \((\varDelta +1)\)-coloring algorithm with \(O(\varDelta ^{3/4}\log \varDelta )+\log ^*{n}\) runtime. To the best of our knowledge, this is the first locally-iterative \((\varDelta +1)\)-coloring algorithm with sublinear-in-\(\varDelta \) runtime. This answers an open question raised in [Barenboim, Elkin, and Goldberg, JACM ’21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The full version of the paper is available at https://arxiv.org/abs/2207.14458.

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-Stabilizing Algorithms. Morgan & Claypool, San Rafael (2019)

    Google Scholar 

  3. Barenboim, L.: Deterministic (\(\Delta \)+1)-coloring in sublinear (in \(\Delta \)) time in static, dynamic, and faulty networks. J. ACM 63(5), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool Publishers, San Rafael (2013)

    Google Scholar 

  5. Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (\(\Delta \)+1)-coloring and applications. J. ACM 69(1), 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (\(\Delta \)+1)-coloring in linear (in \(\Delta \)) time. SIAM J. Comput. 43(1), 72–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chebyshev, P.L.: Mémoire sur les nombres premiers. Journal de mathématiques pures et appliquées 1, 366–390 (1852)

    Google Scholar 

  8. Chen, Y., Datta, A.K., Tixeuil, S.: Stabilizing inter-domain routing in the internet. J. High Speed Netw. 14(1), 21–37 (2005)

    MATH  Google Scholar 

  9. Datta, A.K., Outley, E., Thiagarajan, V., Flatebo, M.: Stabilization of the x.25 connection management protocol. In: International Conference on Computing and Information, ICCI 1994, pp. 1637–1654 (1994)

    Google Scholar 

  10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  11. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

    Google Scholar 

  12. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings of the 2016 IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pp. 625–634. IEEE (2016)

    Google Scholar 

  13. Ghaffari, M., Kuhn, F.: Deterministic distributed vertex coloring: simpler, faster, and without network decomposition. In: Proceedings of the 62nd Annual Symposium on Foundations of Computer Science, FOCS 2022, pp. 1009–1020. IEEE (2022)

    Google Scholar 

  14. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. 70(4), 406–415 (2010)

    Article  MATH  Google Scholar 

  15. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proceedings of the 21st Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 138–144. ACM (2009)

    Google Scholar 

  16. Lamport, L.: Solved problems, unsolved problems and non-problems in concurrency. ACM SIGOPS Oper. Syst. Rev. 19(4), 34–44 (1985)

    Article  Google Scholar 

  17. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: self-stabilization on speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0_2

    Chapter  Google Scholar 

  18. Linial, N.: Distributive graph algorithms global solutions from local data. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science, FOCS 1987, pp. 331–335. IEEE (1987)

    Google Scholar 

  19. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maus, Y.: Distributed graph coloring made easy. In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2021, pp. 362–372. ACM (2021)

    Google Scholar 

  21. Maus, Y., Tonoyan, T.: Local Conflict Coloring Revisited: Linial for Lists. In: Proceedings of the 34th International Symposium on Distributed Computing, DISC 2020, pp. 16:1–16:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  22. Naor, M., Stockmeyer, L.: What can be computed locally? In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 184–193. ACM (1993)

    Google Scholar 

  23. Peleg, D.: Distributed computing: a locality-sensitive approach. In: SIAM (2000)

    Google Scholar 

  24. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 201–207. ACM (1993)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 62172207 and 62332009, and by the Department of Science and Technology of Jiangsu Province under Grant No. BK20211148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, X., Yin, Y., Zheng, C. (2024). Self-stabilizing \((\varDelta +1)\)-Coloring in Sublinear (in \(\varDelta \)) Rounds via Locally-Iterative Algorithms. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14422. Springer, Cham. https://doi.org/10.1007/978-3-031-49190-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49190-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49189-4

  • Online ISBN: 978-3-031-49190-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics