Skip to main content

Therapeutic Potential of Fungal Endophyte-Derived Bioactive Compound in Protozoan Diseases

  • Chapter
  • First Online:
Endophytic Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytes are a group of microbes residing mutually within the tissues of their host plant without causing any overt symptoms. Secondary metabolites produced by fungal endophytes are used in the treatment of many diseases including protozoan diseases like malaria and visceral leishmaniasis (also known as kala-azar). These two parasitic diseases together cause mortality and morbidity to millions of people globally. There are drugs available to treat these diseases, but the increasing resistance among the protozoan parasite to present-day drugs has driven the scientific community in search of novel sources of pharmacologically active compounds of therapeutic value, and medicinal plants derived from fungal endophytes have shown substantial potential for this cause. Compounds like Taxol, quinine, cytochalasins, cyclodepsipeptide, fusaripeptide A, cochlioquinone A, purpureone, isocochlioquinone A, citrinin, terrenolide S, and curvulin derived from fungal endophytes have been used for their anti-plasmodial and antileishmanial property, respectively. This book chapter reviews natural bioactive compounds derived from fungal endophytes with various antiparasitic biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand N, Sharma S (1997) Approaches to design and synthesis of antiparasitic drugs. Pharmachemistry Library 25, Elsevier, Amsterdam

    Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654. https://doi.org/10.1073/pnas.2533483100. Epub 2003 Dec 11. PMID: 14671327; PMCID: PMC307622

  • Calcul L, Waterman C, Ma WS, Lebar MD, Harter C, Mutka T et al (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11(12):5036–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello AL, Alves TM, Rosa CA, Zani CL (2008) Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis 2(12):e348. https://doi.org/10.1371/journal.pntd.0000348. Epub 2008 Dec 16. Erratum in: PLoS Negl Trop Dis 2009;3(1). PMID: 19079599

  • Carroll FM (2017) Sources. In: A good and wise measure. University of Toronto Press, Toronto, pp 411–430

    Google Scholar 

  • Chithambo B, Noundou XS, Krause RW (2017) Anti-malarial synergy of secondary metabolites from Morinda lucida Benth. J Ethnopharmacol 199:91–96

    Article  CAS  PubMed  Google Scholar 

  • de Almeida TT, Ribeiro MADS, Polonio JC, Garcia FP, Nakamura CV, Meurer EC et al (2018) Curvulin and spirostaphylotrichins R and U from extracts produced by two endophytic Bipolaris sp. associated to aquatic macrophytes with antileishmanial activity. Nat Prod Res 32(23):2783–2790. https://doi.org/10.1080/14786419.2017.1380011

    Article  CAS  PubMed  Google Scholar 

  • de Bary A. (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann

    Google Scholar 

  • de Oliveira Filho JWG, Islam MT, Ali ES, Uddin SJ, de Oliveira Santos JV, de Alencar MVOB et al (2017) A comprehensive review on biological properties of citrinin. Food Chem Toxicol 110:130–141

    Article  PubMed  Google Scholar 

  • Do Nascimento AM, Soares MG, da Silva Torchelsen FK, de Araujo JAV, Lage PS, Duarte MC et al (2015) Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World J Microbiol Biotechnol 31(11):1793–1800

    Article  PubMed  Google Scholar 

  • Eckstein-Ludwig U, Webb R, Van Goethem I, East J, Lee A, Kimura M et al (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nat Med 424(6951):957–961

    CAS  Google Scholar 

  • Elkhayat ES, Ibrahim SR, Mohamed GA, Ross SA (2016) Terrenolide S, a new antileishmanial butenolide from the endophytic fungus Aspergillus terreus. Nat Prod Res 30(7):814–820

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P et al (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2(8):494–501

    Article  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology (Reading) 158(Pt 1):17–25. https://doi.org/10.1099/mic.0.052274-0. Epub 2011 Oct 13. PMID: 21998166

  • Ibrahim SR, Abdallah HM, Elkhayat ES, Al Musayeib NM, Asfour HZ, Zayed MF, Mohamed GA (2018) Fusaripeptide A: new antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J Asian Nat Prod Res 20(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe D (1985) Nephrotoxicity of pentavalent antimonials. Lancet 325(8428):584

    Article  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Biochem Mol Biol 1(3):291–309

    Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):487–505

    Article  CAS  Google Scholar 

  • Khan W, Sharma SS, Kumar N (2013) Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Anal 5(6):453–460

    Article  CAS  PubMed  Google Scholar 

  • Kouipou Toghueo RM, Kemgne EAM, Sahal D, Yadav M, Kenou Kagho DU, Yang B et al (2021) Specialized antiplasmodial secondary metabolites from Aspergillus niger 58, an endophytic fungus from Terminalia catappa. J Ethnopharmacol 269:113672. https://doi.org/10.1016/j.jep.2020.113672

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Missaoui A, Mahmud K, Presley H, Lonnee M (2021) Interaction between grasses and Epichloë endophytes and its significance to biotic and abiotic stress tolerance and the rhizosphere. Microorganisms 9(11):2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenta BN, Ngatchou J, Frese M, Ladoh-Yemeda F, Voundi S, Nardella F et al (2016) Purpureone, an antileishmanial ergochrome from the endophytic fungus Purpureocillium lilacinum. Z für Naturforsch B 71(11):1159–1167

    Article  CAS  Google Scholar 

  • Luzzatto L (2010) The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet 376(9742):739–741

    Article  PubMed  Google Scholar 

  • Mackinnon MJ, Marsh K (2010) The selection landscape of malaria parasites. Science 328(5980):866–871. https://doi.org/10.1126/science.1185410

    Article  CAS  PubMed  Google Scholar 

  • Maehara S, Simanjuntak P, Kitamura C, Ohashi K, Shibuya H (2011) Cinchona alkaloids are also produced by an endophytic filamentous fungus living in Cinchona plant. Chem Pharm Bull 59(8):1073–1074

    Article  CAS  Google Scholar 

  • Marinho AM, Rodrigues-Filho E, Moitinho M d LR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283

    Article  Google Scholar 

  • Moreno E, Varughese T, Spadafora C, Arnold AE, Coley PD, Kursar TA et al (2011) Chemical constituents of the new endophytic fungus Mycosphaerella sp. nov. and their anti-parasitic activity. Nat Prod Commun 6(6):1934578X1100600620

    Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Niu G, Wang X, Hao Y, Kandel S, Niu G, Raptis RG, Li J (2021) A novel fungal metabolite inhibits Plasmodium falciparum transmission and infection. Parasites vectors 14(1):1–11

    Article  Google Scholar 

  • Ortega HE, de Morais Teixeira E, Rabello A, Higginbotham S, Cubilla-Ríos L (2014) Anti-L. donovani activity in macrophage/amastigote model of palmarumycin CP18 and its large scale production. Nat Prod Commun 9(1):1934578X1400900128

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Pinto-Martinez AK, Rodriguez-Durán J, Serrano-Martin X, Hernandez-Rodriguez V, Benaim G (2018) Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrob Agents Chemother 62(1):e01614–e01617

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9(3):261–272

    Article  Google Scholar 

  • Soares DA, Rosa LH, da Silva JFM, Pimenta RS (2017) A review of bioactive compounds produced by endophytic fungi associated with medicinal plants. Bol Mus Para Emílio Goeldi-Ciênc Nat 12(3):331–352

    Article  Google Scholar 

  • Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272(7):3961–3966

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58(9):1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Microbial endophytes. Marcel Dekker, New York, pp 17–44

    Google Scholar 

  • Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess W (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Talontsi FM, Lamshöft M, Douanla-Meli C, Kouam SF, Spiteller M (2014) Antiplasmodial and cytotoxic dibenzofurans from Preussia sp. harboured in Enantia chlorantha Oliv. Fitoterapia 93:233–238

    Article  CAS  PubMed  Google Scholar 

  • Toghueo RMK, Kemgne EAM, Eke P, Kanko MIM, Dize D, Sahal D, Boyom FF (2019) Antiplasmodial potential and GC-MS fingerprint of endophytic fungal extracts derived from Cameroonian Annona muricata. J Ethnopharmacol 235:111–121

    Article  CAS  PubMed  Google Scholar 

  • Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17(10):1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Varo R, Chaccour C, Bassat Q (2020) Update on malaria. Med Clin 155(9):395–402

    Article  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73(2):274–276. https://doi.org/10.2307/3545919

    Article  Google Scholar 

  • Worchel ER, Giauque HE, Kivlin SN (2013) Fungal symbionts alter plant drought response. Microb Ecol 65(3):671–678

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Kohlhepp P, Geiser D, Frasquillo Mdel C, Vazquez-Moreno L, Winzerling JJ (2007) Fate of blood meal iron in mosquitoes. J Insect Physiol 53(11):1169–1178. https://doi.org/10.1016/j.jinsphys.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

VKS would like to thank DBT HRD Project and Management Unit, Regional Centre for Biotechnology, Faridabad, Haryana, for providing Junior Research Fellowship. RT would like to thank Non-Net RET Fellowship of Banaras Hindu University. AK would like to thank the University Grants Commission, New Delhi, India, for Senior Research Fellowship. The authors’ lab is supported by grants from the Science and Engineering Research Board (SERB), Indian Council of Medical Research (ICMR) and BHU-Institute of Eminence (IoE) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V.K., Tiwari, R., Kumar, A., Rajneesh, Gupta, R.P., Kumar, R. (2024). Therapeutic Potential of Fungal Endophyte-Derived Bioactive Compound in Protozoan Diseases. In: Singh, B.P., Abdel-Azeem, A.M., Gautam, V., Singh, G., Singh, S.K. (eds) Endophytic Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-49112-2_8

Download citation

Publish with us

Policies and ethics